

HALFEN CAST-IN CHANNELS Technical Product Information

We are one team. We are Leviat.

Leviat is the new name of CRH's construction accessories companies worldwide.

Under the Leviat brand, we have united the expertise, skills and resources of HALFEN and its sister companies to create a world leader in fixing, connecting and anchoring technology.

The products you know and trust, including the Halfen Cast-in channels, will remain an integral part of Leviat's comprehensive brand and product portfolio. As Leviat, we can offer you an extended range of specialist products and services, greater technical expertise, a larger and more agile supply chain and better, faster innovation.

By bringing together CRH's construction accessories family as one global organisation, we are better equipped to meet the needs of our customers, and the demands of construction projects, of any scale, anywhere in the world.

This is an exciting change. Join us on our journey.

Read more about Leviat at Leviat.com

Our product brands include:

Ancon

PLAKA

60 locations

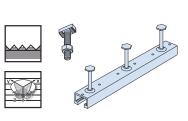
sales in **30+** countries

3000 people worldwide

HALFEN CAST-IN CHANNELS

Content

1 General Information	
Integrated Quality - from start to finish	6
Sustainability, Quality, BIM	7
Product families in Overview	8
Product range - for preliminary computation	9
Application segments and application examples	10-11
Materials/ Corrosion protection	12-13


2 Dimensioning	
Verification method	14
Calculation basics, Verification flow chart	15
HTA-CE/HZA Software	16-17
Tender text example HTA-CE	17

3 Halfen HTA-CE Cast-in Channels	
The benefits at a glance	18
Application examples	19
Halfen HTA-CE Product range - overview channels and bolts	20-21
Halfen Bolts type HS – overview	22-23
Halfen Bolts type HS identification, bolt length, design resistance, torque values	24-25
Halfen HSR Bolts	26
Dynamic loads, edge and bolt spacing	27
Fire resistance	28
HTA-CE standard lengths, HTA-CS Channels "curved solution"	29

4 Halfen HZA Cast-in Channels, serrated – DYNAGRIP®	
The benefits at a glance	30
Application examples	31
Halfen HZA Product range - Overview channels and bolts	32
Halfen HZA standard lengths, HZA-CS Channels "curved solution"	33
Halfen HZS Bolts	34-35
Edge and bolt spacings/bolt lengths	36
Fire resistance	37
Dynamic loads, Tender text example HZA	38

5 HTA-CE/HZA Installation	
Installation aids, further channel parts	39
Channel installation to formwork or concrete	40
Installing Halfen Bolts and attached structures	41
Installation in pre-stressed concrete - channels with stainless steel anchors	42

HALFEN CAST-IN CHANNELS

Content

6 Halfen Curtain Wall System		
The benefits at a glance	43	
Application examples	43	
General information, post and beam facade and modular facade	45	1 11
·	46-47	<u> </u>
Product range Halfen Channel HCW 52/34	48-49	
Halfen Cast-in channels HTA-R and HZA-R with rebar anchors	50	
Edge of slab brackets HCW-ED	51 52	
Dimensioning, interaction diagrams	52	
Design Loads using two HCW-EW brackets, loads in the Halfen Bolts (HCW-ED)	53	
Top of slab brackets HCW-B1 and HCW-B2	54-55	
7 Halfen HGB Channels – handrail connection		
The benefits at a glance	56	
Application examples	57	
Regulations and standards	58	The state of the s
Materials, corrosion protection	59	
•	60	
Product range, ordering examples Installation	61	
Dimensioning with calculation example	62-69	
8 Halfen HTU Channels		
Halfen HTU-S cast-in channel for fixing Profiled Sheet Metal	70-72	^
C-shaped channels with welded anchors	73-76	
C-shaped Chamers with weided anthors	73-70	
9 Halfen Framing Channels		
The benefits at a glance	77	
Application examples	78	
Type overview – an extract from the framing channel catalogues	79	
7,1,2,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4		
10 Roof and wall		
The right solution for each application	80	
Application examples	81	The same
HSF Rafter shoe	82	
HNA Timber fixing strap	83	
Brick tie anchor systems ML + BL	84-86	
Halfen Anchor bolt systems	87	
Restraint ties SPV, HKZ, HKZ-GF/-GU	88-90	
HVL Precast connection	91	
HKW Corner guard	92	
		-
11 Accessories		
The benefits at a glance	93	
Nuts and washers	94	
Threaded rods, hexagonal head bolts, coupler sleeves, ring nuts	95	
Rail clips	96	
		~
Appendix		
Index	97	
References/ Contact, technical support	98-99	

4

HALFEN CAST-IN CHANNELS

Integrated Quality – from Start to Finish

Quality and safety are the ultimate targets in the production of original Halfen Anchor channel system. Therefore all our production locations are ISO 9001 certified to provide products that meet strict quality management standards. On the one hand this involves continual inspections, machine maintenance and quality testing during the manufacturing process and on the other hand it involves stringent quality control procedures of incoming raw materials right through to dispatch of the finished product.

Quality always comes first for our products and is guaranteed during each step of production! The extent, type and frequency of production checks carried out by us is determined by standards set and recorded.

Halfen Anchor channels and T-bolts, originating from our certified manufacturing plants, are produced of strictly regulated raw material. The complete raw material or semifinished goods are procured solely from resources that meet our stringent in-house material specifications. Our suppliers must be ISO 9001 certified and must provide complete documentation on the required performance and quality. Therefore, our suppliers have to prove compliance with our material specifications with a 3.1 inspection certificate in accordance to DIN EN 10204.

The inspection of incoming material is not limited to visual examination and dimensional checks. Every consignment is also analysed via spectral analysis. Moreover, the required tensile strength values, yield stress and rupture points are tested. Raw material is released for production only if all tests results are satisfying and comply with the provided 3.1 certification. The Halfen Anchor channels and T-bolts are continually checked during production for dimensional precision. The required frequency for measurement is set in our quality control procedures.

References TUNNELS

Lötschberg-Base tunnel, Switzerland

At the end of the production process, before dispatch or storage, our (quality management system QMS) regulations require visual checks, dimensional control and tensile tests on a predetermined percentage of finished products. All tested anchor channels must prove a minimum safety factor against steel failure.

Our stringent Quality Assurance and Quality Control processes, part of the implemented QMS at our factories, ensure strict compliance to required quality standards and warrant the complete process chain, from the receipt of the raw material until final delivery of the finished products, are controllable and traceable. Therefore, complete traceability and a guarantee of the required performance and quality can be provided for all our products. Our focused approach on high quality and continuous improvement has been one of the reasons that our stakeholders have trusted us for the last almost 100 years! We are fully aware of our responsibility and will continue to maintain our excellent reputation with high quality products!

BRIDGES

Passerelle Simone de Beauvoir, Paris/France

6

HALFEN CAST-IN CHANNELS

General

BIM

Having completed various projects using BIM methodology, we have considerable experience as a BIM partner. All Leviat engineers are trained to supervise this process in precise detail. Our combination of extensive experience and highlytrained engineers means we are perfectly placed to meet the increasing demand for BIM projects. Examples of our previous projects developed using BIM can be found

Sustainability

An EPD® (Environmental Product Declaration) provides transparent and comparable ecological data which helps to evaluate the sustainability of a building.

Already during the planning phase the data provided here is of great significance for architects and planners. The data provided also helps to ensure the high demands on the environmental performance of the building are met. Health Product Declarations (abbrev. = HPD) complement our information on sustainability. The HPDs include a list of all components and information on the health effects of these components. The new HPD for hot-dip galvanized Halfen Cast-in channels helps to achieve additional points in the Leed v4 system. www.halfen.com > Downloads > Brochures **►** Environmental/Health declarations

Fire-resistance / Material fatigue

A wide variety of Halfen Cast-in channels are tested under fire exposure (according to TR 020 "Evaluation of anchorages in concrete with regard to fire resistance") as well as under cyclic loading. More details, characteristic resistances under fire exposure and fatigue resistances, are provided in the respective European Technical Assessments.

Software

Additional information on the internet

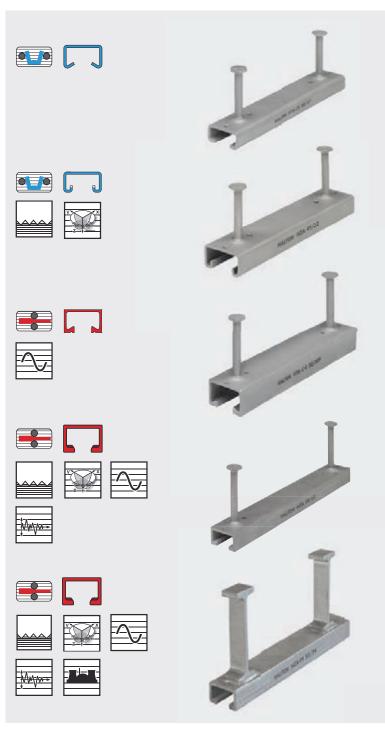
Current valid approvals and much other information for HTA and HZA Anchor channels can be found at www.halfen.com ▷...products ▷ Halfen Cast-in channels **▶** Documents/Software www.halfen.com ▷...products ▷ Halfen Cast-in channels toothed ▶ Documents/

CURTAIN WALL

Edificio Gas Natural, Barcelona/Spain

SPORTS

Rheinenergiestadion, Cologne/Germany


at www.halfen.com ▷ Service ▷ BIM ▷ BIM references.

4

HALFEN CAST-IN CHANNEL

Product Families in Overview

HTA-CE cold-formed

- > Low to medium performance
- As with all HALFEN Channels, perfect for adjustable, surface-flush fixings
- > Economic solution

HZA cold-formed, serrated

- > Suitable for 3-D loads
- Medium load capacities in longitudinal direction

HTA-CE hot-rolled

- > Medium to high load capacity
- > low stress profile with high resistance to dynamic and impact loads, unmatched by cold-rolled alternatives
- High resistance against local flexure due to optimized channel lip geometry
- In combination with Halfen HSR bolts, *medium load bearing in longitudinal channel direction is possible. (*proportionally to the channel cross-section area, load bearing is lower than in application of serrated channels)

HZA DYNAGRIP® hot-rolled, serrated

- > Superior performance
- High load capacities in longitudinal direction due strong mechanical interlock between serrated channel lips and T-bolt heads
- > Best suitable in seismic regions

HZA-PowerSolution hot-rolled, serrated

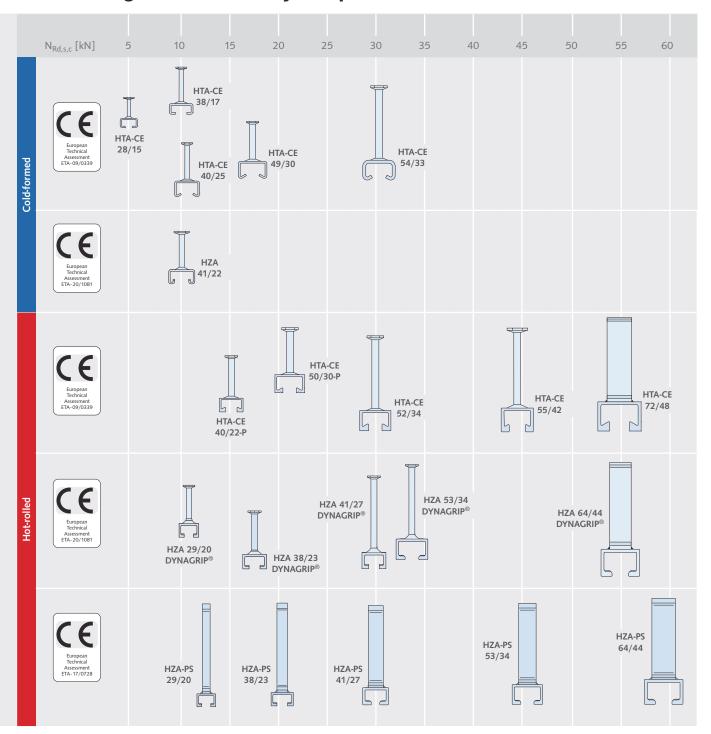
- > Highest performance level
- Developed for applications in safety relevant structures with highest requirements
- > Suitable for crack width up to 1.5mm
- > Tested for extra-ordinary impact loads

There are international approvals for the Halfen Cast-in channels. This means that Halfen Cast-in channels can be used world-wide with planning reliability.

All data in this catalogue is based on European Technical Assessments, resp. Eurocode EN 1990 – EN 1999. For ICC standard catalogues or approvals, please contact your local distributor. Adresses can be found at the end of this catalogue.

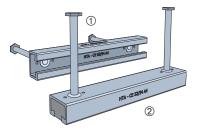
suitable for applications in safety relevant areas in nuclear facilities

3D-Loads


seismic loading

suitable for

HALFEN CAST-IN CHANNEL


Product Range - for Preliminary Computation

Type identification

- $\ensuremath{\textcircled{1}}$ Inside on the bottom of the channel.
- ② Additionally on the channel side

Channel material	Type identification example
1.0038 / 1.0044	HTA-CE 38/17 HZA 53/34
A4: 1.4404 / 1.4571	HTA-CE 38/17 - A4 HZA 53/34 - A4
HCR: 1.4529 / 1.4547	HTA-CE 38/17 - HCR

4

HALFEN CAST-IN CHANNELS

Application Segments and Application Examples

Traffic infrastructure:

Tunnels, bridges, roads, airports and railway stations

Application examples

- > OCS support
- > drainage pipe installation
- > fixing of signage or traffic lights
- fixing of rescue gates, stairways, emergency or maintenance ways
- various adjustable fixings to concrete whether with a straight or rounded shape

Public and residential Buildings:

Stadiums, sports and leisure, trade and utility buildings, office and residential towers or detached houses

Application examples

- adjustable fixing of all kind of elements — concrete, masonry, steel, wood or synthetics to concrete
- > curtain wall façades
- > stadium seatings
- > lifts and elevators
- brickwork, concrete, or natural stone facade claddings
- > rail and banister fixings

HALFEN CAST-IN CHANNELS

Application Segments and Application Examples

General infrastructure:

Power plants, energy & infrastructure, energy storage or transport, water and sewage projects

Application examples

- > cable tray support
- > pipe support
- > ventilation duct support
- > fixing of stairs, ladders, signage, switch cabinets etc.
- application in critical buildings with high seismic risk or where protection against high impact loads is required

Industry:

All kind of plants; production, automotive, agriculture, building industry ...

Application examples

- > machinery fixing
- > fixing of general infrastructure
- > fixing of stairs, ladders, maintenance levels etc.
- fixings in highly stressed areas or when exposed to chemical environments
- > fixing of elements exposed to dynamic loads

4

HALFEN CAST-IN CHANNELS

General - all Channels

Hot-dip galvanized FV:

Dipped in galvanizing bath, with a temperature of app. 460°C; this method is used for the Halfen Anchor Channels and a range of Halfen T-bolts.

Zinc galvanized GVs:

Halfen T-bolts are hot-dip galvanized or electrogalvanized. We always guarantee the best possible corrosion protection. Passivation layers are Cr(VI)-free.

(Sc) = Strength class

Halfen Cast-in channels, steel, hot-dip galvanized							
1			Steel				
9		•		Material		Standard	Zinc coat
100	T		- Channel profile	1.0038		EN 10 025-2 ①	FV: ≥ 55 µm
4 200			Channel profile	1.0044		EN 10 025-2 ①	FV: ≥ 55 µm
			- Bolt anchor B6	Steel		EN 10263 or EN 10269	FV: ≥ 55 µm
			- Weld-on anchor	Steel		EN 10 025-2	FV: ≥ 55 µm
					① Star	al according to EN 10 025-2 and	Halfen specification

① Steel according to EN 10 025-2 and Halfen specification

Halfen Bolts, galvanized steel							
				Steel			
	<u> </u>	<u> </u>		Material		Standard	Zinc coat
(At minimum		Bolt	Stool (Sc) 1 6 or (Sc) 9 9		EN ISO 898-1	FV: ≥ 50 µm	
		BOIL	DOIL	Steel (Sc) 4.6 or (Sc) 8.8		LIN 13O 030-1	GVs: ≥ 12 μm
			Hexagonal nut	Steel (Sc) 5 or (Sc) 8		EN 898-2	FV: ≥ 50 µm
			Hexagonal nut	Steel (3c) 3 01 (3c) 8		LIN 090-2	GVs: ≥ 12 μm
		Washer	Steel		EN ISO 7089,	FV: ≥ 50 µm	
			vvasiici	Steel		EN ISO 7093	GVs: ≥ 12 μm

Stainless steel (NR):

Chromium is the most important alloy element in stainless steel. A specific chromium concentration ensures the generation of a passive layer on the surface of the steel that protects the base material against corrosion. This explains the high corrosion resistance of stainless steel.

Materials:

- WB = Steel, mill finished
- = Steel, hot-dip galvanized
- **GVs** = Steel, zinc plated (special coating) \boxtimes
- = Stainless steel 1.4571 / 1.4404 / 1.4578
- = Stainless steel 1.4462
- HCR = Stainless steel 1.4547 / 1.4529

Halfen Cast-in channels, stainless steel Stainless steel Corrosion Material Standard resistance class ② 1.4404 or 1.4571 Ш Channel profile EN 10 088 1.4529 or 1.4547 ٧ 1.4404, 1.4571 Bolt anchor B6 or 1.4578 EN 10 088 1.4529 or 1.4547 1.4404 or 1.4571 EN 10 088 Weld-on anchor Steel ③ EN 10 025-2

Halfen Bolts, stainless steel								
					Stainless steel			
			Material		Standard	Corrosion resistance class ②		
		- Bolt	1.4404, 1.4571, 1.4578 (A4-50 or A4-70④)		EN 3506-1 and EN 10 088	III		
			1.4462 (FA-70 @)		LIN 10 000	III ④		
				1.4529, HCR-50		EN 3506-1	V	
		Hexagonal nut	1.4404, 1.4571, 1.4578 (A4-50, A4-70)		EN 3506-2 and EN 10 088	III		
			1.4529, HCR-50			V		
		_	Washer	1.4404, 1.4571		EN 10 000	III	
		vvasner	1.4529 or 1.4547		EN 10 088	V		

② See EN 1993-1-4, table A.3; ③ Corrosion protection of mill finished anchor, see page 13

⁴ Stainless steel, strength class 70 bolts are delivered subject to availability from stock in A4-70 grade material or in a higher FA-70 (1.4462) grade material. This applies to all Halfen Bolts listed as A4-70 and FA-70 material in this catalogue.

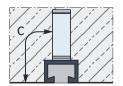
HALFEN CAST-IN CHANNELS

General - all Channels

Corrosion protection requirements

Material and applications								
	1	2	3	4				
Description	Dry interior rooms	Damp interior rooms	Medium corrosion level	High level of corrosion				
Definition of application areas	Anchor channels may only be used in components in indoor environments. For example: living and office spaces, schools, hospitals, commercial shops with the exception of wet rooms as in column 2.	Anchor channels may also be used in components in areas with normal humidity For example: kitchens, bathrooms and laundry-rooms in residential buildings. Exceptions; where permanent steam is present, and under water.	Anchor channels may also be used in outdoor environments (including industrial environments and coastal regions) or in wet rooms, if conditions are not especially aggressive (for example: continual immersion in sea water etc. as in column 4).	Anchor channels may also be used in exceptionally aggressive environments (for example: continual immersion in sea water) or in seawater spray zones, chloride environments in swimming pools or in environments with an extremely aggressive chemical atmosphere (for example flue gas desulphurization plants or road tunnels where de-icer systems are in use).				
Channel profile	Steel 1.0038, 1.0044; EN 10025 Hot-dip galvanized ≥ 55 μm ®	Steel 1.0038, 1.0044; EN 10025 Hot-dip galvanized ≥ 55 µm ® Stainless steel 1.4307, 1.4567, 1.4541; EN 10088	Stainless steel 1.4404, 1.4571, 1.4062, 1.4162, 1.4362 EN 10088	Stainless steel 1.4462 @, 1.4529, 1.4547 EN 10088				
Anchor	Steel 1.0038, 1.0214, 1.0401, 1.1132, 1.5525; EN 10263, EN 10269 Hot-dip galvanized 55 μm ®	Steel 1.0038, 1.0214, 1.0401, 1.1132, 1.5525; EN 10263, EN 10269 Hot-dip galvanized ≥ 55µm ⑥ Stainless steel 1.4307, 1.4567, 1.4541; EN 10088	Stainless steel 1.4404, 1.4571, 1.4362, 1.4578 EN 10088 Mill finish, 1.0038 ®					
Special Halfen Bolts with shaft and bolts in accordance with EN ISO 4018	Steel strength class 4.6/8.8 EN ISO 898-1 Zinc galvanized ≥ 5 μm ④	Steel strength class 4.6 / 8.8; EN ISO 898-1, Hot-dip galvanized ≥ 50 µm ① ⑤ Stainless steel, strength class 50, 70 1.4307, 1.4567, 1.4541 EN ISO 3506-1	Stainless steel Strength class 50, 70 1.4404, 1.4571, 1.4362, 1.4578 EN ISO 3506-1	Stainless steel Strength class 50, 70 1.4462 @, 1.4529, 1.4547 EN ISO 3506-1				
Washers EN ISO 7089 and © EN ISO 7093-1 Product classification A, 200 HV	Steel EN 10025 Zinc galvanized ≥ 5 μm ④	Steel EN 10025 Hot-dip galvanized ≥ 50 µm ① ⑤ Stainless steel Steel grade A2, A3; EN ISO 3506-1	Stainless steel Steel grade A4, A5 EN ISO 3506-1	Stainless steel 1.4462 @,1.4529, 1.4547 EN ISO 3506-1				
Hexagonal nut EN ISO 4032	Steel strength class 5/8 EN ISO 898-2 Zinc galvanized ≥ 5μm ④	Steel strength class 5/8 EN ISO 898-2 Hot-dip galvanized ≥ 50 µm ① ⑤ Stainless steel, strength class 70, 80 Steel grade A2, A3 EN ISO 3506-2	Stainless steel Strength class 70, 80 Steel grade A4, A5 EN ISO 3506-2	Stainless steel Strength class 70, 80 1.4462 ②, 1.4529, 1.4547 EN ISO 3506-2				
Product classification A, 200 HV Hexagonal nut EN ISO 4032	EN ISO 898-2	Steel grade A2, A3; EN ISO 3506-1 Steel strength class 5/8 EN ISO 898-2 Hot-dip galvanized ≥ 50 µm ① ⑤ Stainless steel, strength class 70, 80 Steel grade A2, A3 EN ISO 3506-2	Stainless steel Strength class 70, 80 Steel grade A4, A5					

- ① or zinc galvanized with special coating \geq 12 μ m
- 2 1.4462 not suitable for swimming baths
- 3 Steel in accordance with EN 10025, 1.0038 not for anchor channels 28/15 and 38/17


- (5) Hot-dip galvanized in accordance with EN ISO 10684
 - 6 Hot-dip galvanized in accordance with EN ISO 1461

Halfen Channels (NR) mill finish welded-on anchors

Corrosion protection of the mill finished weld-on anchor is based on the following concrete cover c:

Concrete cover c [mm]							
	30	35	40	50	60		
Profile HTA-CE	-	40/22P	52/34	55/42	72/48		
	-	40/25	54/33	-	-		
	-	-	50/30P	-	-		
	-	-	49/30	-	-		
Profile HZA	38/23	41/22	53/34	64/44	-		

The minimum concrete cover depends on local environmental conditions and bid specifications.

Concrete cover c

Halfen Channels (NR) made completely in stainless steel

The Halfen Cast-in channels "entirely of stainless steel" are not restricted to any minimum concrete cover as no relevant corrosion occurs.

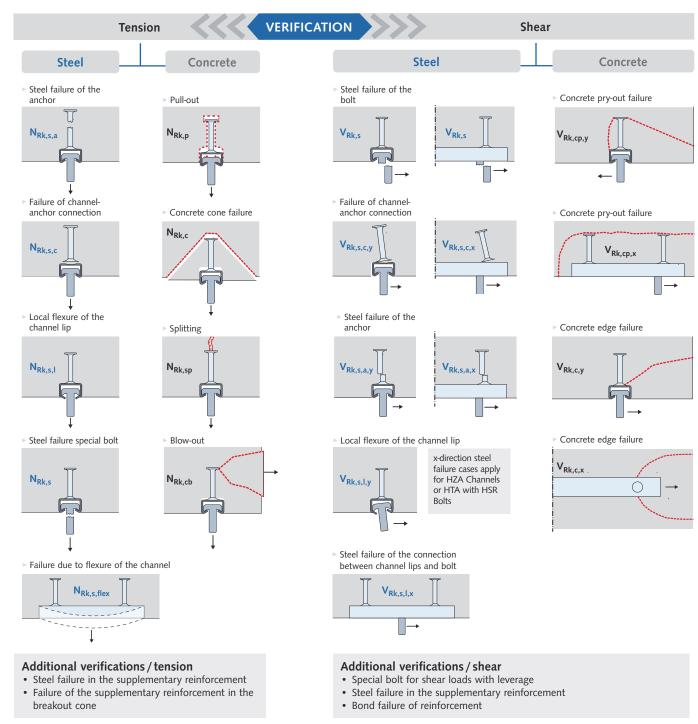
Areas of application

- > bridge and tunnel construction (fastening of pipes, etc.)
- > construction of sewage treatment plants (fixing of spillovers)
- > chemical industry (installations exposed to aggressive substances)
- > ventilated façades, e.g. masonry renders
- also for all structural reinforced concrete elements with higher demands on the concrete cover

Halfen Channels made in stainless steel - HCR

The high corrosion resistance (HCR) Halfen Cast-in channels are mandatory when high concentrations of chlorides, sulphur and nitrogen oxides are present.

Areas of application


- > road tunnels
- > structures in salt water
- indoor swimming pools
- areas not routinely cleaned
- poorly ventilated parking garages
- in narrow, major city streets

4

HALFEN CAST-IN CHANNELS

Dimensioning HTA-CE and HZA Cast-in Channels

Decisive verifications for tension and shear

HALFEN CAST-IN CHANNELS

Dimensioning HTA-CE and HZA Cast-in Channels

Calculation basics

The following information is necessary to verify an anchor channel:

- > type of Halfen Cast-in channel and material
- > length of the Halfen Cast-in channel with number of anchors and spacing
- > position of the Halfen Cast-in channel in the concrete, defined by its distance from the lower, upper, left and right edges of the component
- > thickness of the concrete elements
- > concrete strength class
- > condition of the concrete; cracked or verified as non-cracked
- dense reinforcement in the vicinity of the anchor channel
- > Halfen T-head bolt thread size
- > bolt positions
- > tensile load and shear load of each bolt

Technical support

Engineering services and technical support for your individual projects. Our contact information can be found at the end of this catalogue.

The design values under dynamic loads are given at page 27 for HTA-CE and on page 38 for HZA.

Verification method

1. Select channel.

2. Verify local load application (channel lips) for tension, shear and combined loading.

3. Calculate the anchor loads resulting from tensile loads and shear loads according to the load influence model (unfavourable anchor and load position).

4. Verify the connection between anchor and channel (tension loading).

5. Verify anchor pull-out failure (tension loading).

6. Verify concrete cone failure (tension loading).

7. Verify pry-out failure (loading in shear).

8. Verify concrete edge failure (loading in shear) considering a possible structural edge reinforcement.

If verification is negative, determine required additional reinforcement.

A free, simple to use calculation

software to simplify planning can be downloaded at

www.halfen.com.

9. Verify concrete failure for combined loading, (combination of 6. and 7. as well as combination of 6. and 8.).

If last verification is negative, determine required additional reinforcement.

4

HALFEN CAST-IN CHANNELS

Dimensioning HTA-CE and HZA Cast-in Channels

Halfen HTA-CE/HZA Software

The Halfen Calculation program for Halfen Cast-in channels according to the ETA provides the user with a convenient and very powerful calculation tool.

Verifications

EN1992-4 and EOTA TR047 require a wide range of verifications for cast-in channels and the concrete used. These verifications are processed by the user-friendly dimensioning Software. In just a few seconds the user is provided with a list of suitable Halfen Cast-in channels for the relevant load situation.

Boundary conditions

The calculation takes into account all necessary boundary conditions, typical examples being:

- > cracked or non-cracked concrete
- the geometry of the concrete components, in particular the distances from the channel to the component edge
- > various reinforcement patterns
- consideration of several dimensioning or characteristic loads
- > position of the loads with a definable adjustment range, and the option of shifting the defined bolt pattern along the complete channel length
- verification of the required Halfen T-head bolts and if required also for stand-off installations
- verification of longitudinal forces in Halfen HZA serrated cast-in channels

Input

The geometry and loads are entered interactively. Entries are displayed promptly in a 3D graphic. Entries can also be changed directly in the graphic. Click on the load, the measurement or the component line you want to change to make the required modification.

Input loads

In addition to direct input of bolt loads, it is also possible to calculate the resulting loads by entering the actions/loads caused by secondary components (for example, curtain wall applications).


Results

After calculation, the software output provides either the results for a preselected profile, or in the case of automatic selection a list of all suitable profiles. Profiles and T-bolts with in-complete verifications are high-lighted in red.

Screenshot 1: The Halfen Anchor Channel Software start screen

Screenshot 2: Input screen, Halfen Anchor Channel Software

Screenshot 3: Interactive 3D display

Screenshot 4: Results list

All software can be found under: www.halfen.com \triangleright Downloads \triangleright Software/CAD/BIM

6

HALFEN CAST-IN CHANNELS

Dimensioning HTA-CE and HZA Cast-in Channels

Halfen HTA-CE/HZA Software

Visual control

All verifications for the current channel profile are listed in a tree structure. Green check-marks indicate successful verifications. Red check-marks indicate unsatisfactory verifications.

For further visual control a progress bar on the right indicates the status of the verification process. Here too, red bars mean that a load has been exceeded, while green bars symbolize verifications that meet the criteria.

Detailed calculation information (with load positions, section sizes and utilization factors) can also be selected in a tree menu.

After selecting a Halfen Cast-in channel and suitable bolts, the dimensioning results can be imported into the data list and saved.

Print-outs

Print-outs are possible in a brief and in a verifiable long version. The long version includes all decisive verifications, a diagram of necessary reinforcement and a 2D graphic of the geometry and load.

The latest version of the dimensioning program is available for download on the Internet at www.halfen.com.

System requirements:

- Windows 11, Windows 10, Windows 8.
- Microsoft .NET Framework 4.7.2 or higher version (Download possible at www.halfen.de)

Screenshot 5: Overview of results

Screenshot 6: Print preview

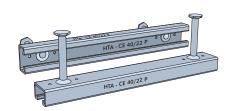

The Halfen design software also contains calculation kernels for verifications according to ICC and AS 5216.

Tender text example

Halfen HTA-CE type Channel 40/22P - FV - 300 - KF

Halfen HTA-CE Channel 40/22P with smooth channel lips for adjustable fixing of components,

according to European Technical Assessment ETA-09/0339, suitable for anchoring in reinforced or non-reinforced standard concrete in a strength class of at least C12/15 and a maximum C90/105 in accordance with EN 206 under static, quasistatic, dynamic loading as well as fire exposure.



with

 $N_{Rk,s,c}$ = 29 kN = char. resistance, steel failure (tension), connection channel anchor FV = Corrosion protection, hot-dip galvanized 300 = Channel length [mm] with 2 anchors,

KF = Foam strip filler,

or equivalent; deliver and install according to the manufacturer's instructions.

HTA-CE CAST-IN CHANNELS

The benefits at a glance

In addition to their excellent adjustability, Halfen Cast-in channels save considerable installation time. The result — faster construction and therefore increased cost savings.

Safe and reliable

- > no damage to the reinforcement
- > approved for fire-resistant structural elements
- > suitable for use in concrete pressure and tensile stress zones
- > high corrosion resistance steels available
- > hot-rolled profiles suitable for dynamic loads
- > European Technical Assessment (ETA)
- > precise calculation with Halfen Anchor channel software

Quick and economical

- > adjustable anchoring
- > bolts instead of welding
- > maximum efficiency when installing matrices and rows
- > cost effective installation using standard tools
- > optimised pre-planning reduces construction time
- > large range of types available for various requirements
- > no noise, no dust and no vibration during installation

HALFEN HTA-CE CAST-IN CHANNELS

Application Examples

CURTAIN WALL

Fixings for curtain wall façades

SPORTS

Seat fixing in stadiums

NOISE BARRIERS

Fixings of noise barriers to concrete posts

UTILITY TUNNELS

Utility fixings in TBM tunnels with curved anchor channels

CURTAIN WALL

Fixings for curtain wall façades

LIFTS/ELEVATOR FIXINGS

Fixing guide-rails with Halfen Channels

BRIDGES

Fixings for drainage systems

TUNNELS

Fixing of overhead cables in railway tunnels

HALFEN HTA-CE CAST-IN CHANNELS

Product Range - Overview: Channel and Bolts

Identification values HTA-CE					
Profile	HTA-CE 72/48	HTA-CE 55/42	HTA-CE 52/34	HTA-CE 50/30P	HTA-CE 40/22P
Туре	hot-rolled	hot-rolled	hot-rolled	hot-rolled	hot-rolled
Geometry Halfen HTA-CE Channels Note: observe the installation height h _{nom}	72	26 26 26 27	22.5	22.5	39.5
Steel					
material A4		-			
description: see page 12 HCR	-	-	-	-	-
Bolts	HS 72/48	HS 50/30	HS 50/30	HS 50/30	HS 40/22
Threads	M20-M30	M10-M20	M 10-M 20	M10-M20	M10-M16
s _{I,N} [mm]	144	109	105	98	79
Profile load capacity*					
N ⁰ _{Rd,s,I} [kN]	66.7	61.1	40.0	23.9	21.1
V ⁰ _{Rd,s,l} [kN]	81.1	61.1	43.5	32.8	19.4
M _{Rd,s,flex} [Nm]	7472	5606	2933	2437	1208
Geometry					
h _{nom} [mm] ① ②	(191)	182 (185)	162 (164)	112	97
b _{ch} [mm]	72	54.5	52.5	49	39.5
h _{ch} [mm]	48.5	42	33.5	30	23
I _y [mm ⁴] Steel NR	349721	187464	93262	52896	20029
h _{ef} [mm]	179	175	155	106	91
c _{min} [mm]	150	100	100	75	50
* Concrete load capacity has	to be verified for each individ	lual case (taking the geometr	ic boundary conditions ir	to account).	

Concrete load capacity has to be verified for each individual case (taking the geometric boundary conditions into account).

NR = Stainless steel

 $[\]begin{split} c_{min} &= \text{minimal spacing channel/concrete edge} \\ s_{slb} &= \text{axial spacing for bolts for N}^0_{Rd,s,l} \end{split}$

 $N_{Rd,s,l}^0$ = channel lip load capacity (tension) $V_{Rd,s,l}^0$ = channel lip load capacity (shear)

① Nominal size and tolerance

② weld-on I- or T- anchors subject to available stock; for these (h_{nom}) values are in brackets

HALFEN HTA-CE CAST-IN CHANNELS

Product Range – Overview: Channel and Bolts

Identification	n values HTA-CE					
Profile		HTA-CE 54/33	HTA-CE 49/30	HTA-CE 40/25	HTA-CE 38/17	HTA-CE 28/15
Гуре		cold-rolled	cold-rolled	cold-rolled	cold-rolled	cold-rolled
Geometry Halfen Cha	annels HTA-CE					
h _{nom}	serve the on height	22 54 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	50	40 + 50 +	38 18	12
Material	Steel					
material	A4					
description: see page 12	HCR		×	-	M	
Bolts		HS 50/30	HS 50/30	HS 40/22	HS 38/17	HS 28/15
hreads		M10-M20	M 10-M 20	M10-M16	M10-M16	M6-M12
_{I,N} [mm]		107	100	80	76	56
rofile load o	capacity*					
N ⁰ _{Rd,s,I} [kN]		30.6	17.2	11.1	10.0	5.0
Λ _{Rd,s,flex} [Nn	n]	2595	1455	931	504	276
Geometry						
n _{nom} [mm] (0 2	162 (164)	103	89	81	50
o _{ch} [mm]		54	50	40	38	28.0
n _{ch} [mm]		33	30	25	17.5	15.25
'ch L'''''				20570		
	Steel	72079	41827	19097	8547	4060
y [mm ⁴]		72079 155	41827 94		8547 76	4060 45

^{*} Concrete load capacity has to be verified for each individual case (taking the geometric boundary conditions into account).

 c_{min} = minimal spacing channel/concrete edge $N_{Rd,s,l}^0$ = channel lip load capacity (tension)

NR = Stainless steel s_{slb} = axial spacing for bolts for $N_{Rd,s,l}^0$

 $V_{Rd,s,l}^0$ = channel lip load capacity (shear)

① Nominal size and tolerance

 $[\]ensuremath{@}$ weld-on I- or T- anchors subject to available stock; for these (h_{nom}) values are in brackets

HALFEN HTA-CE CAST-IN CHANNELS

Halfen HS Bolts

uitable for profile	HTA-CE 72/48				HTA-	CE 55/42, 52/34.	54/33, 50/30P,	49/30
Bolt					HS 50/30			
Bolt dimensions	HS 72/48			A251				
l [mm]	M20	M24	y	M30	M10	M12	∌ ∸ M16	M20
20	-	-	-	-	-	-	-	-
	-	-	-	-		FV4.6	-	-
30	-	-	-	-	FV8.8	-	-	-
	-		-	-	-	- A4-70	-	-
	-	-	-	-	-	FV4.6	FV4.6	-
	-	-	-	-	FV8.8	FV8.8	FV8.8	-
40	-	-	-	-	-	-	-	-
	-		-	-	-	-	-	
	-	-	-	-	-	A4-70	A4-70	-
	-	-	-	-	-		-	FV4.6
45	-	-	-	-	-	FV8.8 -	-	FV8.8
	- FV4.6	FV4.6	-	-	-	FV4.6	FV4.6	-
	-	-	-	-	FV8.8	FV8.8	-	-
50	-	A4-50	-	-	-			-
	-	-	-	-	-	A4-70 -	A4-70 HCR-50*	-
	-	-	-	-	-	-		- FV4.6
55	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	FA-70
	- FV8.8		-	-	-	FV4.6 FV8.8	FV4.6 FV8.8	- FV8.8
CO	-	_	_	-	-	-	-	-
60	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	- 4.70	-
	-	-	-	-	-	-	A4-70 -	- FV4.6
65	-	-	-	-	-	-	-	FV8.8
70	-	-	-	-	-	FV8.8	-	-
	FV4.6	FV4.6 FV8.8	FV4.6	FV4.6	-	-	-	FV4.6
75	GVs8.8	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	FA-70
	-	-	-	-	-	FV4.6	FV4.6	FV4.6
80	-	-	-	-	-	FV8.8	FV8.8 -	FV8.8 -
80	-	-	-	-	-	-	_	-
	-	-	-	-	-	-	A4 70	-
	FV4.6	FV4.6	-	FV4.6	-	FV4.6	FV4.6	FV4.6
	-	-	FV8.8	-	-	FV8.8 -	FV8.8 -	FV8.8 -
100	GVs8.8	GVs8.8	-	-	-	-	-	-
	-	A4-50	-	-	-		-	
	-	-	-	-	-	FA-70 -	- HCR-50*	FA-70 -
	-	-	-	-	-	FV4.6	- HCK-50"	FV4.6
125	-	-	-	-	-	FV8.8	-	FV8.8
	-	-	-	-	-	·	-	-
	FV4.6	FV4.6	-	FV4.6	-	- GVs4.6	FV4.6 -	- FV8.8
150	-	GVs8.8	-	-	-	- -	-	-
150	-	-	-	-	-	-	-	-
							FA-70	FA-70
175	-		-		-	-	HCR-50* FV8.8	-
.,,	FV4.6	FV4.6	-	FV4.6	-	-	-	-
200	-	-	-	-	-	GVs4.6	GVs4.6	GVs4.6
250	-	-	-	-	-	-	-	-
300	-	-	-	-	-		GVs4.6	-

HALFEN HTA-CE CAST-IN CHANNELS

Halfen HS Bolts

Suitable for profile	HIA	-CE 40/22P, 4	0/25		HTA-CE 38/17			HTA-CE 28/15			
Bolt	HS 40/22				HS 38/17			HS 28/15			
Bolt dimensions				lt o T			73.6				
l [mm]	M10	M12	M16	M10	M12	M16	M6	M8	M10	M	
20	FV4.6	-	-	-	-	-	-	-	-		
	FV4.6 FV8.8	FV4.6 FV8.8	-	FV4.6 GVs4.6	FV4.6 GVs4.6	- GVs4.6	- GVs4.6	- GVs4.6	FV4.6 GVs4.6	GV	
30	- FVO.0	-	-	- -	-	A4-50	-	-	-	UV:	
	A4-70	A4-70	-	A4-70	A4-70	-	-	A4-70	A4-70		
	FV4.6	FV4.6	FV4.6	-	-	FV4.6	-	-	- FV8.8		
40	FV8.8 -	FV8.8 -	FV8.8 -	GVs4.6	GVs4.6	GVs4.6	GVs4.6	GVs4.6	GVs4.6		
40	-	-	-	-	-	-	-	-	-		
	- A4-70	- A4-70	- A4-70	-	- A4-70	A4-50 -	-	-	- A4-70		
	A4-70 -	-	-	-	A4-70 -	-	-	-	A4-70 -		
45	-	FV8.8	-	-	-	-	-	-	-		
	- F\/// C	-	-	-	-	-	-	-	-		
	FV4.6 -	FV4.6 FV8.8	FV4.6 FV8.8	FV4.6 GVs4.6	FV4.6 GVs4.6	FV4.6 GVs4.6	-	GVs4.6	FV4.6 GVs4.6	GV	
50	-	-	-	-	-	A4-50	-	-	A4-50		
	A4-70	A4-70	A4-70	- HCD 50*	A4-70	- HCD 50*	-	-	- HCD 50*		
	-	-	-	HCR-50*	-	HCR-50*	-	-	HCR-50*		
55	-	-	-	-	-	-	-	-	-		
	- F\/// C	-	-	-	-	-	-	-	-		
	FV4.6 FV8.8	FV4.6 FV8.8	FV4.6 FV8.8	-	-	- FV8.8	-	-	-		
60	-	-	-	GVs4.6	GVs4.6	GVs4.6	-	GVs4.6	GVs4.6		
60	-	-	-	-	GVs8.8	-	-	-	-		
	-	-	- A4-70	-	- A4-70	A4-50 -	-	-	- A4-70*		
65	-	-	-	-	-	-	-		-		
	-	-	-	-	- F\/0 0	-	-	-	-		
70	-	-	-	-	FV8.8	-	-	-	-		
75	-	-	-	-	-	-	-	-	-		
, 5	-	-	-	-	-	-	-	-	-		
	- FV4.6	FV4.6	FV4.6	-	-	FV4.6	-	-	-		
	-	FV8.8	FV8.8	-	-	-	-	-	-		
80	-	-	-	GVs4.6	GVs4.6	GVs4.6	-	GVs4.6	GVs4.6	GV	
	-	- A4-70	- A4-70	-	- A4-70	A4-50 -	-	-	- A4-70		
	FV4.6	FV4.6	FV4.6	-	-	FV4.6	-	-	-		
	-	FV8.8	FV8.8	- C\/s/1 C	- C\/s/L C	-	-	- C\/s/1 C	- C\/s/1 C		
100	-	-	-	GVs4.6	GVs4.6	GVs4.6	-	GVs4.6	GVs4.6		
. 30	-	-	-	-	A4-50	-	-	-	A4-50*		
	-	-	FA-70	LCD FO*	-	- HCD FO*	-	-	LCD FO*		
	FV4.6	FV4.6	- FV4.6	HCR-50*	-	HCR-50*			HCR-50*		
125	-	-		-	GVs4.6	GVs4.6	-	-	GVs4.6		
	-	-	-	-	-	-	-	-	A4-50*		
	-	GVs4.6	FV4.6	GVs4.6	GVs4.6	GVs4.6	-	GVs4.6	- GVs4.6		
150	-	-	-	-	-	-	-	-	-		
150	-	-	-	-	-	-	-	-	A4-50*		
	_	_	_	_	-	HCR-50*	-	_	_		
200	-	- CV-4 C	- CV-4 C	-	- CV-4 C	- C\/s/1 C	-	-	- CV-4-C		
200	-	GVs4.6	GVs4.6	-	GVs4.6	GVs4.6	-	-	GVs4.6 A4-50*		
250	-	-	GVs4.6	-	-	-	-	-	-		
300	-	-	GVs4.6	_	_	_	_	_			

4

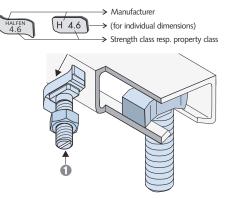
HALFEN HTA-CE CAST-IN CHANNELS

Halfen HS Bolts

Halfen Bolts — Type HS

Standard Halfen Bolts (no nib or serration) for all profile types HTA-CE

- > two direction load capacity
- > identified on **①** bolt tip with **1 notch**


Strength class 4.6 / 8.8 galvanized (GVs) or hot-dip galvanized (FV)

Material grade A4-50 / A4-70 / FA-70 Stainless steel

Strength class 50 Stainless steel (1.4529/1.4547)

f [mm]

2.33.0

5.67.4

7.9

10.5

7.9

12.915.5

Lip dimensions f

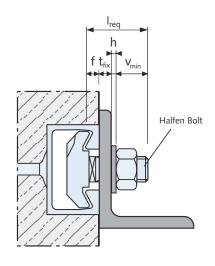
Channel profile

28/15

38/17 40/22P 40/25

49/30 50/30P

52/34


54/33

55/42

72/48

Calculating the bolt length I_{req} for Halfen Bolts

$$I_{req} = t_{fix} + f + h + v_{min}$$

Dimensions V _{min}	
Bolt diameter	v _{min} [mm]
M6	11.0
W8	12.5
M10	14.5
M12	17.0
M16	20.5
M20	26.0
M24	29.0
M27	31.5
M30	33.5

	=	required	holt	length
1000		reduired	DOIL	ICHEUL

 t_{fix} = thickness of clamped component

f = profile lip heighth = washer thickness

v_{min} = nut height EN ISO 4032 + overhang approximately 5 mm (≥ M20: 7 mm)

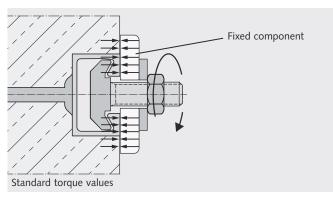
Bolt	design	values

The table on the right lists the design resistance of Halfen Bolts with different thread diameters, materials and strength classes.

 $N_{Rd,s,s}$ is the resistance against tension loads, $V_{Rd,s,s}$ is the the resistance against shear loads and $M^0_{Rd,s,s}$ is the flexural resistance when subjected to transverse load induced with a lever arm.

Design	resistanc	e									
Materi	al/Strengt	th class	M6	M8	M10	M12	M16	M20	M 24	M 27	W30
	N _{Rd,s,s}	[kN]	4.0	7.3	11.6	16.9	31.4	49.0	70.6	91.8	112.2
4.6	$V_{Rd,s,s}$	[kN]	2.9	5.3	8.3	12.1	22.6	35.2	50.7	66.0	80.6
	$M^0_{Rd,s,s}$	[Nm]	3.8	9.0	17.9	31.4	79.8	155.4	268.9	398.7	538.7
	N _{Rd,s,s}	[kN]	10.7	19.5	28.6	44.9	83.7	130.7	188.3	244.8	299.2
8.8	$V_{Rd,s,s}$	[kN]	6.4	11.7	17.2	27.0	50.2	78.4	113.0	146.9	179.5
	$M^0_{Rd,s,s}$	[Nm]	9.8	24.0	42.5	83.8	213.1	415.4	718.4	1065.2	1439.4
	N _{Rd,s,s}	[kN]	3.5	6.4	10.1	14.8	27.4	42.8	61.7	80.2	98.1
A4-50	$V_{Rd,s,s}$	[kN]	2.5	4.6	7.3	10.6	19.8	30.9	44.5	57.9	70.7
	M ⁰ _{Rd,s,s}	[Nm]	3.2	7.9	15.7	27.5	70.0	136.3	235.8	349.7	472.5
	N _{Rd,s,s}	[kN]	7.5	13.7	21.7	31.6	58.8	91.7	132.1	171.8	210.0
A4-70	$V_{Rd,s,s}$	[kN]	5.4	9.9	15.6	22.7	42.2	66.0	95.1	123.6	151.0
	M ⁰ _{Rd,s,s}	[Nm]	6.9	16.8	33.5	58.8	149.4	291.3	503.7	746.9	1009.2

HALFEN HTA-CE CAST-IN CHANNELS

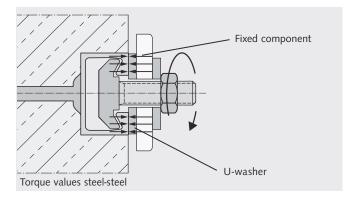

Halfen HS Bolts

Torque values HS

Standard

Components are braced against the concrete and anchor channel.

Torque is applied as in the following table and must not be exceeded.



0		
Standard: Recommend	ed torque values T _{inst}	
LITA CE	Halfen Bolt	Torque value T _{inst} [Nm] Steel 4.6; 8.8
HTA-CE Profile	HS M [mm]	Stainless steel Strength class 50 Strength class 70
	6	3
28/15	8	8
20/15	10	13
	12	15
	10	15
38/17	12	25
	16	40
40/22P	10	15
40/227	12	25
.0,25	16	45
	10	15
49/30	12	25
50/30P	16	60
	20	75
	10	15
52/34	12	25
54/33	16	60
	20	120
	10	15
55/42	12	25
33/42	16	60
	20	120
	20	120
72/48	24	200
72/70	27	300
	30	380

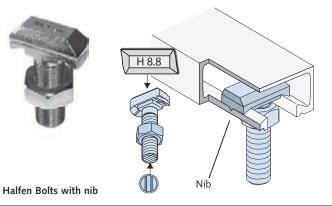
Steel-Steel

Components are braced against the anchor channels using suitable washers.

Torque is applied as in the following table and must not be exceeded.

Steel-Steel: Recommended torque values T _{inst}						
		Torque value T _{inst} [Nm]				
HTA-CE Profile	Halfen Bolt HS M	Steel	Steel	Stainless steel	Stainless steel	
	[mm]	4.6	8.8	Strength class 50	Strength class 70	
	6	3	-	3	_	
20/45	8	8	20	8	15	
28/15	10	15	40	15	30	
	12	25	70	25	50	
	10	15	40	15	30	
38/17	12	25	70	25	50	
	16	65	180	60	130	
	10	15	40	15	30	
40/22P 40/25	12	25	70	25	50	
40/25	16	65	180	60	130	
	10	15	40	15	30	
49/30	12	25	70	25	50	
50/30P	16	65	180	60	130	
	20	130	360	120	250	
	10	15	40	15	30	
52/34	12	25	70	25	50	
54/33	16	65	180	60	130	
	20	130	360	120	250	
	10	15	40	15	30	
55/42	12	25	70	25	50	
55/42	16	65	180	60	130	
	20	130	360	120	250	
	20	130	360	120	250	
72/48	24	230	620	200	440	
72/40	27	340	900	300	650	
	30	460	1200	400	850	

 $Tightening\ torques\ are\ also\ provided\ in\ the\ installation\ instructions,\ included\ with\ any\ box\ of\ bolts.$


① Torque values apply only to bolts in delivery condition (unlubricated).

4

HALFEN HTA-CE CAST-IN CHANNELS

Halfen HSR Bolts with Nib

Halfen Bolts — Type HSR (not part of the ETA)

- **>** only for hot-rolled profiles: 40/22P, 50/30P, 52/34, 72/48
- > only for carbon steel: WB and FV
- > load capacity in all directions

Torque values HSR

HSR

8.8

M16

72/48 - M20

- > load capacity in channel longitudinal direction according to expert report
- > identification on bolt tip with 2 notches
- > Tightening torques are provided also in the installation instructions, includedwith every box of bolts.

Bolt design values HSR

Available HS	SR .					
Suitable for profile	72/48	52/34,	50/30P	40/22P		
Bolt	HSR 72/48	HSR 5	50/30	HSR 40/22		
Bolt dimensions	3951			339		
I [mm]	M20	M16	M20	M16		
40	-	FV8.8	-	GVs8.8		
45			GVs8.8	-		
60	-	GVs8.8, FV8.8	GVs8.8	GVs8.8, FV8.8		
75	FV8.8	GVs8.8	GVs8.8, FV8.8	-		
80	-	FV8.8	-	-		
100	-	GVs8.8	-	-		
GVs = Zinc galvanized with special coating FV = Hot-dip galvanized						

M20	400
Load capacity HSR	
Bolt HSR	Grade 8.8 in channel longitudinal direction $F_{Rd}[kN]$
40/22 - M16	7.0
50/30 - M16	7.0
50/30 - M20	10.5

Torque values

[Nm]

200

10.5

If loads in the channel's longitudinal direction have to be verified, we recommend using serrated Halfen HZA Channels with serrated Halfen HZS Bolts. See pages 30–36.

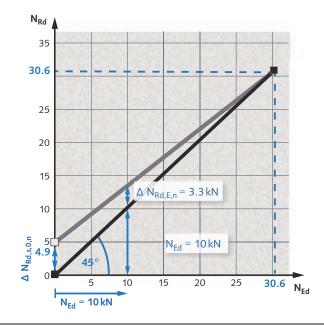
HALFEN HTA-CE CAST-IN CHANNELS

HTA-CE Dynamic Loads/Edge and Bolt Spacing

Design resistance for $n = 2 \times 10^6$ load cycles

Profile HTA-CE	Туре	$\Delta N_{Rd,s,0,n}$	Allowable bolts	Material
40/22P	FV	2.94	M12 M16	8.8 4.6 / 8.8
50/30P	FV	3.6	M16 M20	4.6 / 8.8 4.6 / 8.8
52/34	FV	4.9	M16 M20	8.8 8.8

Example (also see diagram to the right):

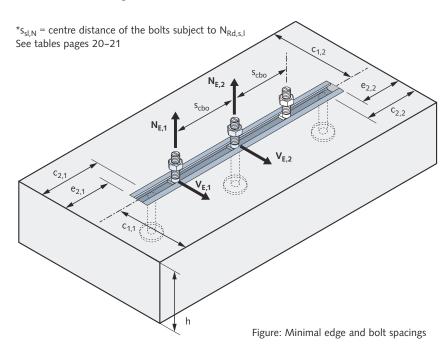

Profile HTA-CE 52/34 - FV (standard, hot-dip galvanized), for $n = 2 \times 10^6$ load cycles:

 $N_{Rd} = 55 \div 1.8 = 30.6$ (taken from the ETA)

 N_{Ed} from permanent load = 10 kN (assumption)

 $\Delta N_{Rd,E,n} = (30.6 - 10) \times 4.9/30.6 = 3.3 \text{ kN}$

Diagram: HTA-CE 52/34 - FV for $n = 2 \times 10^6$ load cycles

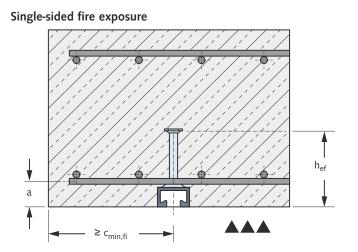

Minimum edge distances and minimum bolt spacing

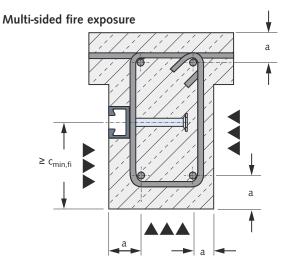
Anchors must be installed at a minimum distance from the component edges.

The distance depends on the selected channel profile.

According to the ETA, the spacing between bolts s_{cbo} must not be less than $S_{s,min} = 5 \times d_s$. Reduction of the load bearing capacity is required if $s_{cbo} < s_{sl,N}^*$.

The concrete load-bearing capacity must be verified for each individual case using the Halfen Software!

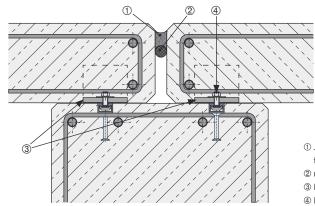

Edge and bolt spacing [mm]							
HTA-CE Profiles	M	S _{s,min}	c _{min}	e _{min}			
	6	30	40	15			
20/45	8	40	40	15			
28/15	10	50	40	15			
	12	60	40	15			
	10	50	50	25			
38/17	12	60	50	25			
	16	80	50	25			
40/25	10	50	50	25			
40/25 40/22P	12	60	50	25			
40/226	16	80	50	25			
	10	50	75	50			
49/30	12	60	75	50			
49/30	16	80	75	50			
	20	100	75	50			
	10	50	75	40			
50/20D	12	60	75	40			
50/30P	16	80	75	40			
	20	100	75	40			
	10	50	100	65			
52/34	12	60	100	65			
54/33	16	80	100	65			
	20	100	100	65			
	10	50	100	65			
EE /43	12	60	100	65			
55/42	16	80	100	65			
	20	100	100	65			
	20	100	150	115			
72 / 40	24	120	150	115			
72/48	27	135	150	115			
	30	150	150	115			


4

HALFEN HTA-CE CAST-IN CHANNELS

HTA-CE Fire Resistances

Halfen HTA-CE Cast-in channels have been tested and classified for direct exposure to fire in accordance with EAD 330008 using the Standard ISO time-temperature curve (STC). The values shown in the table below are taken from ETA-09/0339.


▲▲▲ fire exposure direction

Fire resistance capacities for HTA-CE Cast-in channels — steel failure*												
	HTA-CE	28/15	38/17	40/25	40/22P	49/30	50/30P	54/33	52/34	55/42	72/48	
Fire protection classes depending	Halfen Bolt	M12	M16	M16	M16	M16	M20	M20	M20	M20	M24	
design resistances	R30	1,9	3,2	3,6	6,0	4,0	9,5	8,9	10,1	10,3	14,8	
$N_{Rd,s,fi} = V_{Rd,s,fi}$	R60	1,3	2,4	3,6	4,5	3,5	7,1	6,5	7,5	7,6	11,1	
[kN]	R90	0,7	1,4	2,0	2,9	2,5	4,8	4,2	4,8	4,9	7,3	
	R120	0,5	1,0	1,2	1,6	2,1	3,6	3,0	3,5	3,6	5,4	
	R30		35							0		
Minimum axial	R60		35						50			
spacing a [mm]	R90		45						50			
	R120			6	0			65		70		
Minimum edge	fire exposure single-sided	90	152	158	182	188	212	310	310	350	358	
spacing c_{min,fi} [mm]	fire exposure multi-sided	300	300	300	300	300	300	310	310	350	358	

Load capacities are valid for Halfen Cast-in channels made of steel and stainless steel.

Halfen Cast-in channels are suitable for design connections of non-load bearing fire walls to concrete walls or columns, if the anchorage conforms to the standards set in DIN 4102-4 section 5.12.5.

Note: For fire wall connections of brickwork to concrete, see page 86 or technical product information Halfen FM Brickwork connections www.halfen.com/downloads

- ① Joint sealing compound acc. to EN ISO6927
- 2 mineral fibre sealing rope
- ③ L-bracket ≥ 60 x 5 mm
- ④ Halfen Bolt diam. ≥ 10 mm

^{*} Concrete load capacity under fire exposure has to be verified for each individual case in accordance with EOTA TR 047 for strength classes C20/25 to C50/60.

HALFEN HTA-CE CAST-IN CHANNELS

HTA-CE Standard Lengths/HTA-CS – Curved Solution

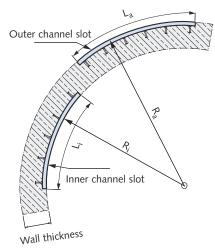
HTA-CE Standard lengths

Our standard lengths are optimized lengths to reduce cut-offs. Standard lengths, with order numbers can be found in our current price list.

We deliver Halfen HTA-CE Cast-in channels in any length from 100 mm to 6070 mm. The number and spacing of the anchors can be freely defined. Please contact us at www.halfen.com or see the back inside cover of this catalogue for contact information.

The calculation program for Halfen Cast-in channels in accordance with the ETA. The tool is a powerful, user-

friendly program for calculation of any channel length, anchor spacing and concrete cover. Free download at www.halfen.com downloads/software-cad/...


② Does not apply to HTA-CE 40/22P - A4

HTA-CE standard lengths and number of anchors								
		Length [mm] / Number	of anchors					
HTA-CE 72/48	HTA-CE 55/42	HTA-CE 40/25, 50/30P, 49/30, 52/34, 54/33	HTA-CE 40/22P	HTA-CE 28/15, 38/17				
150 /2	150 /2	150 /2	150 /2	100 /2				
200 /2	200 /2	200 /2	200 /2	150 /2				
250 /2	250 /2	250 /2	250 /2	200 /2				
300 /2	300 /2	300 /2	300 /2	250 /2				
350 /3	350 /3	350 /3	350 /3	300 /3				
400 /3	400 /3	400 /3	400 /3	350 /3				
550 /3	550 /3	550 /3	550 /3	450 /3				
1050 /5	1050 /5	800/4	800/4 ^②	550 /4				
6070 /25	6070 /25	1050 /5	1050 /5	850 /5				
-	-	3030 /13 ^①	1300 /6 ^②	1050 /6				
-	-	6070 /25	1550 /7 ^②	3030 /16				
-	-		1800 /8 ^②	6070 /31				
-	-	*	2050 /9 ^②	-				
-	-		2300 /10 ^②	-				
-	-		2550 /11 ^②	-				
-	-		3030 /13 ^②	-				
-	-	-	6070 /25	-				
	Anchor spacing ≤ 250 mm							

Halfen HTA-CS Channels — Curved Solution

Areas of application:

- > tunnel construction
- > precast segments for utility tunnels
- > curved walls
- > sewage plants

 $\mathbf{R_i}$ = Radius of inner channel slot

 $\mathbf{R_a}$ = Radius of outer channel slot

L = Length of channel after bending (maximum 5400 mm)

Curved Halfen Cast-in channels in tunnel segments

Ordering example:

Halfen Cast-in channel, curved HTA-CS 52/34-Q - A4, R_i = 4000 mm, L = 1050 mm

Profile		HTA-CS 72/48			HTA-CS 50/30P		HTA-CS 40/22P			HTA-CS 28/15
	Material									
Inner		on request	0.80 m	0.75 m	on request	0.80 m	on request	1.10 m	0.70 m	0.75 m
channel slot: min. R _i		on request	0.80 m	0.80 m	on request	0.80 m	on request	0.90 m	0.70 m	0.75 m
Outer channel slot:		on request	4.00 m	3.60 m	on request	3.00 m	on request	2.20 m	3.20 m	2.00 m
min. R _a		on request	4.00 m		on request			1.70 m	5.40 m	7.80 m

[■] hot-dip galvanized ■ stainless A4 * please contact our technical support team for more detailed information

① Does not apply to HTA-CE 52/34, HTA-CE 54/33

HALFEN HZA CAST-IN CHANNELS, serrated

The benefits at a glance

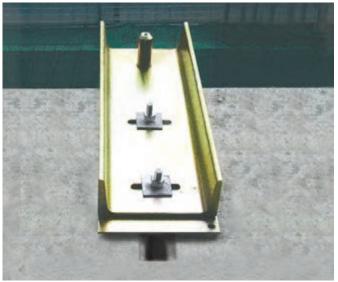
In addition to their excellent adjustability, Halfen Cast-in channels save considerable installation time. The result - faster construction and therefore increased cost savings.

Safe and reliable

- > uniform load bearing capacity in all directions
- > European Technical Assessment ETA
- innovative serration on channel lips and T-bolt heads provides additional mechanical interlock connection
- > approved for fire-resistant structural elements
- > hot-rolled channels, suitable for dynamic loads
- > suitable for use in earthquake safety design
- > hot-rolled channels are free from inherent stress

Quick and economical

- > adjustable anchorage
- > bolts instead of welding
- > maximum efficiency when installing in rows
- > cost-effective installation using standard tools
- > optimized pre-planning reduces construction time
- > user-friendly installation; no noise, dust and vibration


HZA-PS CAST-IN CHANNELS

More Information on the HZA-PS is available at: www.halfen.com ▶ Downloads ▶ Brochures ▶ Technical Product Information

HALFEN HZA CAST-IN CHANNELS

Application Examples: Installations with Halfen HZA Cast-In Channels

CURTAIN WALL

Fixings of a Curtain wall façade, HZA near edge installation

FAÇADES

Fixings for emergency access balconies (Vertical installation of Halfen Channels)

INDUSTRIAL PLANT INSTALLATIONS

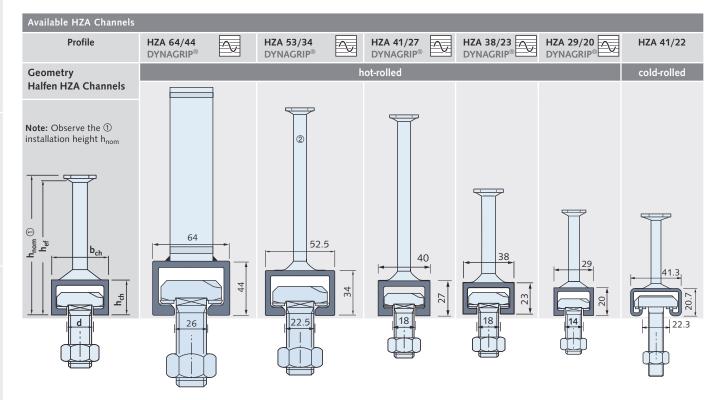
Pipe supports on vertical HZA Channels

SKI LIFT

Fixing of the drive unit for a ski lift

LIFTS / ELEVATORS

Fixing for guide-rails


INDUSTRIAL BUILDING

Vertical channels in columns to attach further components

HALFEN HZA CAST-IN CHANNELS

Product Range

① Nominal size and tolerance

Material	Steel						
material description: see page 12	A4						
Bolts		HZS 64/44	HZS 53/34	HZS 38/23	HZS 38/23	HZS 29/20	HZS 41/22
Threads		M20-M24	M16-M20	M 12-M 16	M12-M16	M 12	M12-M16
$s_{I,N} = s_{I,V} [mm]$		128	105	80	76	58	83
Profile load capaci	ity*						
A10 FLA17	Steel	58.9	45.8	29.8	21.8	12.7	11.2
N ⁰ _{Rd,s,l} [kN]	NR	52.4	38.9	-	22.2	-	14.5
\ 0 FLAIZ	Steel	86.8	56.2	29.8	24.4	11.2	16.5
V ⁰ _{Rd,s,l,y} [kN]	NR	52.4	53.1	-	21.7	-	12.6
Steel		39.7	18.3	10.9 (M12) 14.8 (M16)	10.9	7.0	6.7
V _{Rd,s,l,x} [kN]	NR	38.2	20.5	-	11.5	-	5.6
. [Steel	6030	3002	1990	1302	759	637
M _{Rd,s,flex} [Nm]	NR	6889	3137	-	1452	-	651
Geometry							
h _{nom} [mm] ① ②		(187)	161 (165)	155	99	87	85
b _{ch} [mm]		64.0	52.5	40.0	38.0	29.0	41.3
h _{ch} [mm]		44.0	34.0	27.0	23.0	20.0	20.7
I _y [mm ⁴]		240300	92600	39000	21100	10200	12600
h _{ef} [mm]		178	155	148	94	82	82
c _{min} [mm]		125	100	75	75	50	50

^{*} Concrete load capacity has to be verified for each individual case (taking the geometric boundary conditions into account).

 c_{min} = minimal spacing channel/concrete edge

NR = Stainless steel

 s_{slb} = axial spacing for bolts for $N_{Rd,s,l}^0$

 $N^0_{Rd,s,l}$ = channel lip load capacity (tension) $V^0_{Rd,s,l,y}$ = channel lip load capacity (perpendicular shear) $V_{Rd,s,l,x}$ = channel lip load capacity (longitudinal shear)

2 weld-on I- or T-anchors subject to available stock; for these (h_{nom}) values are in brackets

A4 =Stainless steel 1.4571/1.4404

All hot-rolled profiles are suitable for dynamic loads

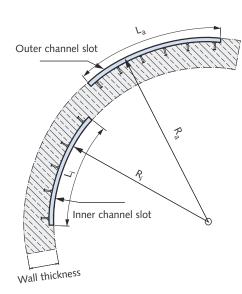
① Nominal size and tolerance

FV = Steel hot-dip galvanized 1.0038/1.0044

HALFEN HZA CAST-IN CHANNELS

Halfen HZA Channels: Standard Lengths/Halfen HZA Channels Curved Solution

Halfen HZA Channels — Standard lengths


Standard lengths* - Length [mm] / Number of anchors									
	HZA 64/44; 53/34	HZA-PS 64/44; 53/34	HZA 41/27	HZA-PS 41/27	HZA 38/23	HZA-PS 38/23	HZA 29/20	HZA-PS 29/20	HZA 41/22
This tables lists the standard	-	-	-	-	-	-	-	-	100/2
lengths of cast-in channel in	150/2	-	150/2	-	150/2	-	150/2	-	150/2
the Halfen HZA Product range. Our standard lengths are	200/2	200/2	200/2	200/2	200/2	200/2	200/2	200/2	200/2
optimized lengths to reduce	250/2	-	250/2	-	250/2	-	250/2	-	250/2
cut-offs. Order numbers may	300/2	-	300/2	-	300/2	-	300/3	-	300/2
be found in the current Halfen price list. Other lengths are	350/3	350/3	350/3	350/3	350/3	350/3	350/3	350/3	350/3
available on request.	400/3	-	400/3	-	400/3	-	400/3	-	400/3
	550/3	550/3	550/3	550/3	550/3	550/3	550/4	550/4	550/3
* please contact our technical support for more information	-	800/4	-	800/4	800/4	800/4	-	800/5	-
support for more information	1050/5	1050/5	1050/5	1050/5	1050/5	1050/5	1050/6	1050/6	1050/5
	-	3030/13	-	3030/13	3030/13	3030/13	3030/16	3030/16	-
	6070/25	6070/25	6070/25	6070/25	6070/25	6070/25	6070/31	6070/31	6070/25

We deliver Halfen HZA Cast-in channels in any length from 100 mm to 6070 mm. The number and spacing of the anchors can be freely defined. Please contact us at www.halfen.com or see the back inside cover of this catalogue for contact information.

The Halfen Calculation program for Halfen Cast-in channels in accordance with the ETA. The tool is a powerful, user-friendly program for calculation of any channel length, anchor spacing and concrete cover. Free download at www.halfen.com/downloads/software-cad/...

Halfen HZA Channels curved solution

 R_i = Radius of inner channel slot

 $\mathbf{R_a}$ = Radius of outer channel slot

L = Length of channel after bending (maximum 5400 mm)

Areas of application:

- > tunnel construction
- > reinforced concrete tunnels for utilities
- > curved walls
- > sewage plants

Curved Halfen Cast-in channels in tunnel segments

Ordering example:

Halfen Cast-in channel, curved HZA-CS 53/34-Q - A4, $R_i = 4000$ mm, L = 1050 mm

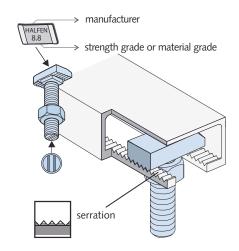
Smallest ra							
Profile		HZA-CS	HZA-CS	HZA-CS	HZA-CS	HZA-CS	HZA-CS
	Material	64/44	53/34	41/27	38/23	29/20	41/22
Inner		on request	on request	on request	2.60 m	0.85 m	0.70 m
channel slot: min. R _i		on request	on request	on request	1.20 m	-	0.70 m
Outer		on request	on request	on request	1.40 m	1.10 m	2.20 m
channel slot: min. R _a		on request	on request	on request	3.50 m	-	4.80 m
■ hot-dip g	■ hot-dip galvanized ■ A4 stainless steel				* please conta	act our technic	cal support

4

HALFEN HZA CAST-IN CHANNELS

Halfen HZS Bolts

Available Halfen HZS Bolts



- The serration also ensures a positive load transmission in the longitudinal channel direction. The danger of bolt slippage is minimized.
- > The bolt is marked on the shaft end with 2 notches.
- > Strength grade or material grade is marked on the bolt heads

Halfen HZS Bo	olts								
Bolt	HZS 6	54/44	HZS	53/34	HZS 3	38/23	HZS 29/20	HZS 4	1/22
Suitable for profile	64,	/44	53	3/34	41/27;	38/23	29/20	41/	22
Bolts dimensions	57		۵۱ (ر	6	28.5		209	341	
Ø I [mm]	M20	M24	M16	M20	M12	M16	M12	M12	M16
30	-	-	-	-	GVs8.8	-	GVs8.8	-	-
35	-	-	-	-	-	-	-	A4-50 FV8.8	-
40	-	-	-	-	GVs8.8	GVs8.8	GVs8.8	-	-
50	-	-	-	-	FV8.8* GVs8.8	GVs8.8	FV8.8* GVs8.8	A4-50 FV8.8	A4-50 FV8.8
60	-	-	A4-70 FV8.8* GVs8.8	-	GVs8.8	A4-70 FV8.8 GVs8.8	GVs8.8	-	-
65	-	-	-	FV8.8* A4-70 GVs8.8	-	-	-	-	-
80	A4-70* FV8.8* GVs8.8*	A4-70* GVs8.8*	FV8.8*	FV8.8*	GVs8.8	A4-70 FV8.8* GVs8.8	GVs8.8	A4-50	-
100	-	FV8.8*	A4-70 FV8.8* GVs8.8	A4-70 GVs8.8	GVs8.8	GVs8.8	-	-	FV8.8
125	A4-70* GVs8.8*	-	-	-	-	-	-	-	-
150	-	A4-70* GVs8.8*	-	-	-	GVs8.8	-	-	-
*on request									

HALFEN HZA CAST-IN CHANNELS

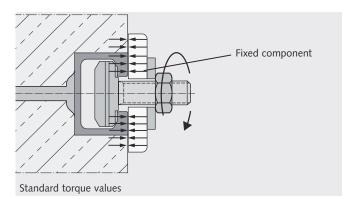
Halfen Bolts: Dimensioning

Halfen HZS Bolts — Load capacity and bending moment

Design resistance HZS with hot-rolled HZA DYNAGRIP® Cast-in channels

DYNAGRIP® HZA 64/44; HZA 53/34; HZA 41/27; HZA 38/23; HZA 29/20

Material/Strength class		M12	M16	M20	M24
	N _{Rd,s,s} [kN]	44.9	83.7	130.7	188.3
8.8	V _{Rd,s,s} [kN]	27.0	50.2	78.4	113.0
	$M^0_{Rd,s,s}$ [Nm]	84.0	212.8	415.2	718.4
A4-70	N _{Rd,s,s} [kN]	31.6	58.8	91.7	132.1
	V _{Rd,s,s} [kN]	22.7	42.2	66.0	95.1
	M ⁰ _{Rd,s,s} [Nm]	59.0	149.4	291.0	503.8

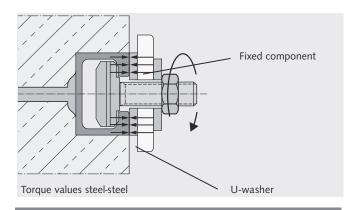

Design resistance HZS with cold-rolled HZA Cast-in channels									
	HZA	41/22							
Material/Strengt	h class	M12	M16						
	N _{Rd,s,s} [kN]	32.3	62.2						
8.8	V _{Rd,s,s} [kN]	27.0	50.2						
	$M^0_{Rd,s,s}$ [Nm]	84.0	208.8						
	N _{Rd,s,s} [kN]	14.1	22.4						
A4-50	V _{Rd,s,s} [kN]	10.6	19.8						
	M^0_{Pd} of $[Nm]$	27.7	70.2						

Torque values for Halfen HZS Bolts

Standard

Components are braced against the concrete and anchor channel.

Torque is applied as in the following table and must not be exceeded.



Standard: Recommended torque values T _{inst}					
HZA Profile	Halfen Bolt HZSM [mm]	Torque value T _{inst} [Nm]			
		Steel 8.8	Stainless steel Strength class 50	Stainless steel Strength class 70	
41/22	12	30	20	-	
	16	40	50	-	
29/20	12	35	-	-	
38/23	12	55	-	50	
	16	75	-	75	
41/27	12	75	-	-	
	16	125	-	-	
53/34	16	135	-	130	
	20	165	-	165	
64/44	20	315	-	250	
	24	375	-	335	

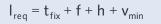
Steel-Steel

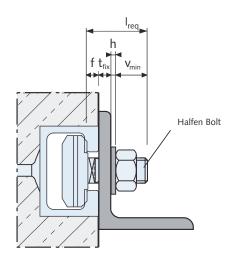
Components are braced against the anchor channels using suitable washers.

Torque is applied as in the following table and must not be exceeded.

Steel-Steel: Recommended torque values T _{inst}					
HZA Profile	Halfen Bolt	Torque value T _{inst} [Nm]			
	HZS M [mm]	Steel 8.8	Stainless steel Strength class 50	Stainless steel Strength class 70	
41/22	12	50	20	-	
41/22	16	140	50	-	
29/20	12	75	-	-	
38/23	12	75	-	50	
	16	185	-	130	
41/27	12	75	-	-	
41/2/	16	185	-	-	
E2/24	16	185	-	130	
53/34	20	360	-	250	
64/44	20	360	-	250	
	24	625	-	435	

 $Tightening\ torques\ are\ also\ provided\ in\ the\ installation\ instructions,\ included\ with\ any\ box\ of\ bolts..$


¹ Torque values apply only to bolts in delivery condition (unlubricated).


4

HALFEN HZA CAST-IN CHANNELS

Minimum Edge Distances and Minimum Bolt Spacing/Bolt Length

Calculating the bolt length I_{req} for Halfen HZS Bolts

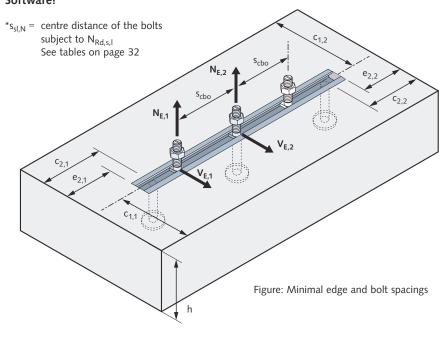
Dimensions V _{min}	
Bolt diameter	v _{min} [mm]
M6	11.0
M8	12.5
M10	14.5
M12	17.0
M16	20.5
M20	26.0
M24	29.0
M27	31.5
M30	33.5

Lip dimensions f	
Channel profile	f [mm]
64/44	10.0
53/34	7.5
41/27	7.0
38/23	5.5
29/20	5.0
41/22	7.0

 I_{req} = required bolt length

 t_{fix} = thickness of clamped component

f = profile lip height

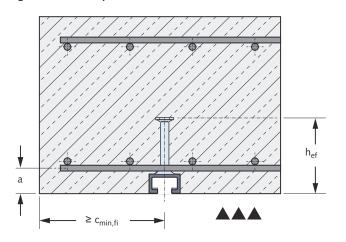

h = washer thickness

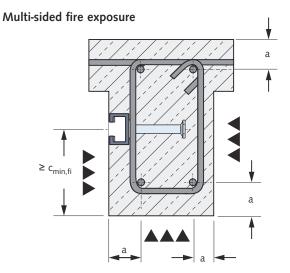
 v_{min} = nut height EN ISO 4032 + overhang approximately 5 mm (\geq M20: 7 mm)

Minimum edge distances and minimum bolt spacing

Anchors must be installed at a minimum distance from the component edges. The distance depends on the selected channel profile. According to the ETA, the spacing between bolts s_{cbo} must not be less than $s_{s,min} = 5 \times d_s$. Reduction of the load bearing capacity is required if $s_{cbo} < s_{sl,N}^*$ (see table on page 32).

The concrete load-bearing capacity must be verified for each individual case using the Halfen Anchor channel Software!


Edge and bolt spacing [mm]					
HZA Profiles	Μ	S _{s,min}	c _{min}	e _{min}	
64/44	24	120	125	90	
04/44	20	100			
52/2 <i>A</i>	20	100	100	65	
53/34	16	80			
41/27	16	80	75	40	
41/27	12	60	75	40	
38/23	16	80	75	47	
36/23	12	60	75	47	
29/20	10	50	50	22	
44 /22	16	80	50	22	
41/22	12	60	50	22	


HALFEN HZA CAST-IN CHANNELS

HZA Fire Resistances

Halfen HZA Cast-in channels, serrated have been tested and classified for direct exposure to fire in accordance with EAD 330008 using the Standard ISO time-temperature curve (STC). The values shown in the table below are taken from ETA-20/1081.

Single-sided fire exposure

▲▲▲ fire exposure direction

Fire resistance capacities for HZA Cast-in channels, serrated — steel failure*													
	HZA	29/20	38,	/23	41	/27	53/34		64/44		41/22		
Fire protection classes depending	Halfen Bolt	M12	M12	M16	M12	M16	M16	M20	M20	M24	M12	M16	
design resistances	R30	2.7	3.5	4.5	3.5	4.5	4.5	10.3	10.3	17.0	2.4	2.3	
$N_{Rd,s,fi} = V_{Rd,s,fi}$	R60	2.1	2.7	3.3	2.7	3.3	3.3	7.8	7.8	14.8	1.7	1.8	
[kN]	R90	1.5	1.9	2.1	1.9	2.1	2.1	5.3	5.3	9.9	1.1	1.2	
	R120	1.3	1.5	1.5	1.5	1.5	1.5	4.0	4.0	7.4	0.7	1.0	
	R30	25	30		35		40		50		2	5	
Minimum axial	R60	25	3	30		35		40		50		25	
spacing a [mm]	R90	35	3	5	35		40		50		35		
	R120	50	5	0	50		50		5	0	5	0	
Minimum edge spacing c_{min,fi} [mm]	fire exposure single-sided	164	18	38	296		310		356		164		
	fire exposure multi-sided	300	30	00	300		310		356		300		

 $Load\ capacities\ are\ valid\ for\ serrated\ Halfen\ HZA\ Cast-in\ channels\ made\ of\ steel\ and\ stainless\ steel.$

^{*} Concrete load capacity under fire exposure has to be verified for each individual case in accordance with EOTA TR 047 for strength classes C20/25 to C50/60.

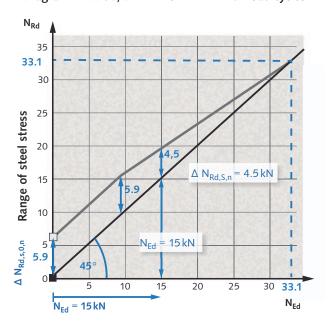
HALFEN HZA CAST-IN CHANNELS

Dynamic Loads

HZA Channels; design resistance for $n = 2 \times 10^6$ load cycles

Profile HZA	Туре	$\Delta N_{Rd,s,0,n}$	N _{lod,s,n}	Allowable bolts	Material
38/23		3.4	6.2	M16	
41/27	E\/	3.4	6.2	M16	8.8
53/34	FV	5.9	9.2	M20	0.0
64/44		8.7	20.2	M24	

Example (also see diagram to the right):

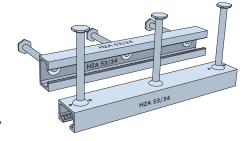

Profile HZA 53/34 - FV (serrated, hot-dip galvanized), for $n = 2 \times 10^6$ load cycles:

 $N_{Rd} = 59.6 \div 1.8 = 33.1$ (taken from the ETA)

 N_{Ed} from permanent load = 15 kN (assumption)

$$\Delta N_{Rd,E,n} = (33.1 - 15.0) \times 5.9/(33.1 - 9.2) = 4.5 \text{ kN}$$

Diagram: HZA 53/34 - FV for $n = 2 \times 10^6$ load cycles



Tender text example

Halfen HZA type Channel 53/34 - FV - 350 - KF

Halfen HZA Channel, serrated 53/34 DYNAGRIP with serrated channel lips for adjustable fixing of components,

in accordance with European Technical Assessment ETA-20/1081, suitable for anchoring in reinforced or non-reinforced standard concrete in a strength class of at least C12/15 and a maximum C90/105 in accordance with EN 206 under static, quasi-static, dynamic loading as well as fire exposure.

Type HZA 53/34 - FV - 350 - KF

with

 $N_{Rk,s,c}$ = 59 kN = char. resistance, steel failure (tension), connection channel anchor $\Delta_{NRk,s,lo,n}$ = 8,0 kN = char. fatigue resistance (2 × 10⁶ load cycles), steel failure (tension),

FV = Corrosion protection, hot-dip galvanized 350 = Channel length [mm] with 3 anchors,

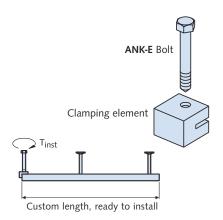
KF = Foam strip filler,

or equivalent; deliver and install according to the manufacturer's instructions.

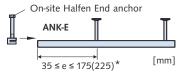
HALFEN HTA-CE/HZA CAST-IN CHANNELS

Installation Aids/Further Channel Parts

ANK-E end anchor; for on-site custom cut-length of Halfen Cast-in channels


Notes for assembling end anchor, type ANK-E

- > Cut the Halfen Cast-in channel at the selected point.


 The cut face must be at a right angle to the longitudinal axis of the channel. The end projection "e" should not be less than 35 mm and not more than 175 (225) mm*.
- Select the correct ANK-E End anchor for the Halfen Cast-in channel profile; see table on the right. Slide the clamping element on to the back of the channel. If necessary, push in the foam filler at the end of the channel.
- > Tighten the bolt by applying the required torque. See table (right) for correct torque value.

End anchor selection									
End anchor	Thread	Torque T _{inst} [Nm]							
ANK-E1 - FV	M8	10							
ANK-E1 - A4	M8	10							
ANK-E2 - FV	M10	20							
ANK-E2 - A4	M10	20							
	End anchor ANK-E1 - FV ANK-E1 - A4 ANK-E2 - FV	End anchor Thread ANK-E1 - FV M8 ANK-E1 - A4 M8 ANK-E2 - FV M10							

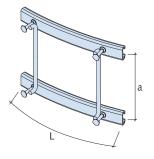
 $\ensuremath{\textcircled{1}}$ Short HZA 41/22 sections may be used with one end anchor only. Not included in the ETA.

Custom lengths

* 175: for 28/15, 38/17 225: for 40/25, 41/22

Halfen Channel pairs

Material/type:


Channel (Type straight or curved):

FV = Hot-dip galvanized

A4 = Stainless steel

Spacer:

Reinforcement steel B500B or B500B/A NR, Ø 10-16 mm Recommended for stainless steel type spacers in: B500B/A NR.

Ordering example:

Type: Halfen Channel pair HTA-CE 38/17

Dimensions: $L = 350 \, \text{mm}$, $a = 200 \, \text{mm}$ Material: hot-dip galvanized, with filler Radius: $R_i = ...$ (for curved type)

Halfen Corner channel

Material/type:

Channel and anchor:

FV = Hot-dip galvanized

A4 = Stainless steel

Standard type:

a/b = 125/250 mm Other lengths for a and b and other profiles are available on request

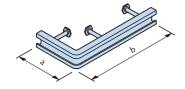
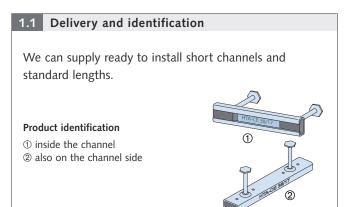
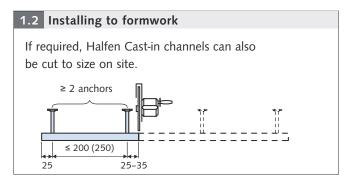


Figure: HTA-CE 38/17 - Corner piece


Area of application:


- fixing for Halfen Console anchors for supporting brickwork cladding
- other near edge fixings


4


HALFEN HTA-CE/HZA CAST-IN CHANNELS

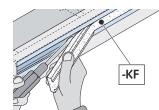
Installation/Assembly

6

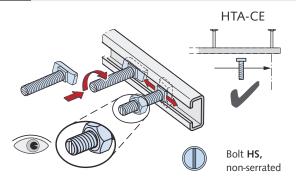
HALFEN HTA-CE/HZA CAST-IN CHANNELS

Installation/Assembly

3.1 Removing the filler


Strip filler, available in two versions:

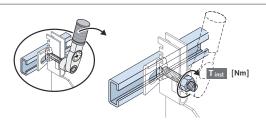
KF – PE strip filler with reinforcement layer


KF-PE strip filler

Removing the strip filler

Grip the strip filler at one end and pull out in one piece by hand; use a tool, e.g. a screwdriver.

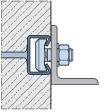
4.1 Installing Halfen Bolts

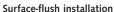

Bolt HSR with nib or HZS serrated

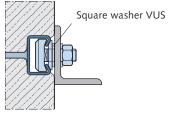
Safe assembly with Halfen Cast-in channels

Halfen Bolts can be inserted anywhere in the channel slot, turned 90° and then locked in place by tightening the nut. Do not position bolts at channel ends past the last anchor. On channels with bolt anchors, the anchor locations are visible through the channel slot.

Check ®

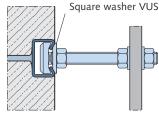

Bolts: After installation check that the bolts are properly aligned; the notch or notches in the tip of the shank must be at right angles to the longitudinal axis of the channel.




Fixings

The bolt heads must sit flush on both lips of the anchor channel and be secured by tightening the nut with a torque wrench with the required value. Observe the torque values in the tables on page 25/26 for HS/HSR or page 35 for HZS.

Direct attachment ①



Non-flush installation

① If the front surface of the channel is set back from the concrete surface, the attached structure must be shimmed with a washer (VUS). In case of shear stress, add bolt flexure to the tensile force.

Stand-off installation ②

② Always install a square washer for stand-off installations.

Example:

Halfen Channel: HTA-CE 49/30
Halfen Bolt: HS 50/30 - M16
Washer: VUS 49/30 - M16

Assembly instructions on the internet

Multi-language assembly instructions can be found at www.halfen.com ▶ Downloads ▶ Brochures ▶ Assembly Instructions.

HALFEN HTA-CE/HZA ASSEMBLY

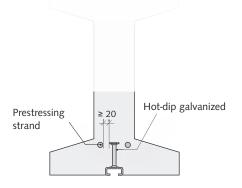
Installation in Pre-stressed Concrete

Halfen Anchor channels, hot-dip galvanized with stainless steel anchors

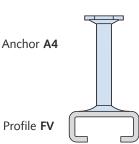
Requirements

according to EN 1992-1-1/NA (EC 2 with German National Annex, 2nd edition, 2016, chapter 8.10.1.1) "Ensure at least 20mm concrete between pre-stressed tension strands and galvanized components." Otherwise there is a risk of hydrogen induced cracking.

Solution


If hot-dip galvanized channels are used together with stainless steel bolt anchors then the pre-stressed tension-strands are allowed to have contact with the stainless steel bolt anchor.

Types:


Lengths available: up to 6.07 m

Available profiles:

- > 50/30P
- **>** 49/30
- **>** 40/25
- > 38/17

HALFEN CURTAIN WALL SYSTEM

The benefits at a glance

Modern buildings require façades of the highest quality that can be installed quickly and safely. This is the reason the Halfen Curtain Wall System is chosen more and more frequently by architects and investors.

For modular façades. Anchored to the top surface of floor slabs.

Fast and cost-effective

- 3-dimensional adjustable connection when used with cast-in channels
- > uses bolts instead of welding
- **>** fast assembly reduces installation time

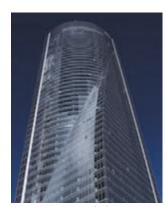
For post and beam façades. Anchored to the edges of slabs.

For post and beam façades. Anchored to the top surface of

© 2023 · B 23-EN · www.halfen.com

floor slabs.

4


HALFEN CURTAIN WALL SUPPORT SYSTEMS Application Examples

Fixing of a curtain wall system using HCW-B2 Brackets connected to HTA-CE Cast-in channels

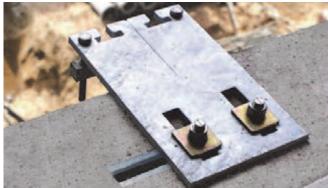
Liberty Life, Johannesburg

Torre Espacio, Madrid

Fixing of a post and beam façade using HCW-ED Brackets on HTA-CE Cast-in channels

Post office Tower, Bonn


Sage Centre, Gateshead


Fixing of a modular façade using HCW-ED Brackets on HTA-CE Cast-in channels

Burj Chalifa, Dubai

Edificio Gas Natural, Barcelona

Typical curtain wall fixing with HTA-CE Cast-in channels

Westin Libertador Hotel, Lima

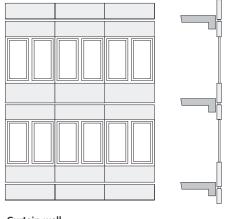
World Financial Center, Shanghai

6

HALFEN CURTAIN WALL SUPPORT SYSTEMS

General Information

Halfen Curtain wall system


The curtain wall facade system gets its name from the fact that the construction hangs like a curtain in front of the floor slabs. (See figure 1 section)

The system is thin and lightweight, usually aluminum and glass. The façade is attached to the main structure of the building using only the required number of point-load connections. It is not structural, and by design, only able to carry its own weight, but it transfers

load of wind and gravity to the structure of the building.

Specifically, this includes sufficient stability against wind loads, adequate ability to shrink and expand as well as insulation against frost in winter, heat in summer and against external noise.

In addition, various requirements must be met to protect against fire and other critical situations.

Curtain wall

Figure 1 partial view of a façade

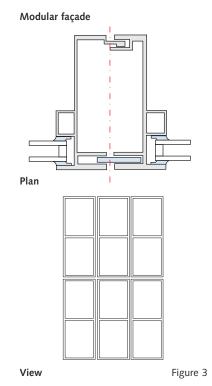
section

Post and beam façade and the modular façade

Basically, we distinguish between two methods of curtain wall façades:

- > the post and beam façade
- > and the modular façade.

Post and beam façade


One basic distinctive difference is the way expansion in the façade is distributed (for example; thermal expansion). With the post and beam façade (see figure 2) the vertical and horizontal frame supports are installed in spacings corresponding to the façade elements. The supports are installed with an expansion gap between components allowing for sufficient expansion.

The respective longitudinal and transverse connections have an expandable joint. The filler elements (glass or panel) installed in a post and beam structure permit movement within the tolerance of the designed expansion joint. The glass and filler elements are delivered separately and are then installed on site, requiring on-site scaffolding.

Plan View Figure 2

Modular façade

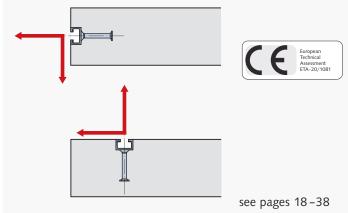
With the modular façade method (see figure 3), the façade is made of prefabricated elements, in which glass, natural stone or infills are pre-installed. The façade profiles are designed as a key and slot system to allow for expansion.

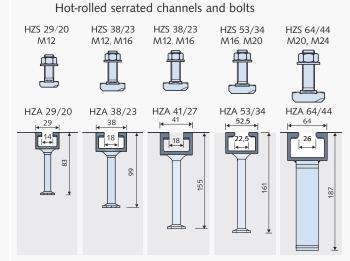
This method provides immediate weather protection and allows the building contractor to start interior work on the respective floor directly after the prefabricated modules have been installed.

Scaffolding is not required with this method of construction.

4

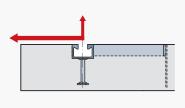
HALFEN CURTAIN WALL SUPPORT SYSTEMS


Product Range

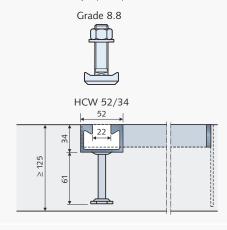

Load conditions and required Halfen Cast-in channels

Standard slab thickness

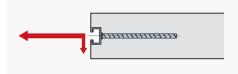
with standard tensile and transverse tensile loads


Halfen Channels with bolt anchors or weld-on 1-anchors

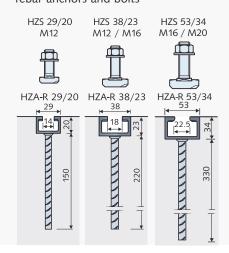
Thin slabs (thickness ≥ 12.5 cm) with high transverse tensile loads and small edge distance


Halfen Curtain wall channel HCW 52/34 (not included in the HTA-CE approval)

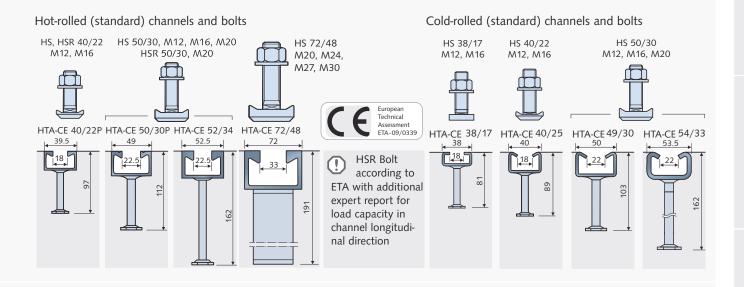
see pages 48-49

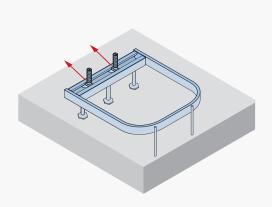

HCW 52/34 and bolt

HS 50/30, M16, M20

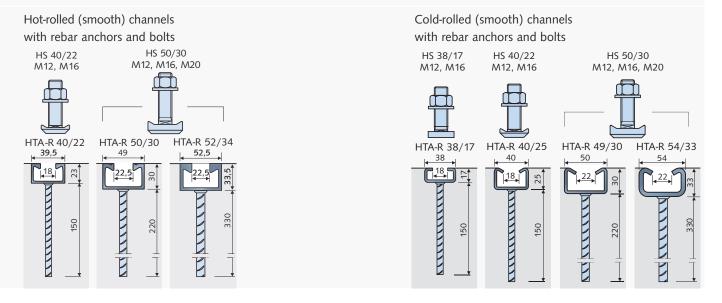

Thin slabs (thickness ≥ 10 cm) with high tension loads

Halfen Channels HTA-R or HZA-R with rebar anchors (not included in the HTA-CE and HZA approvals)

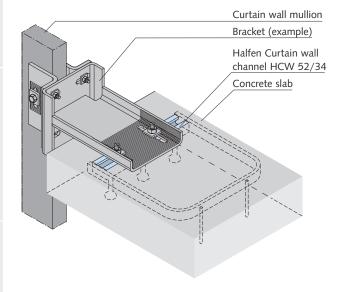

see page 50


Hot-rolled serrated channels with rebar anchors and bolts

HALFEN CURTAIN WALL SUPPORT SYSTEMS

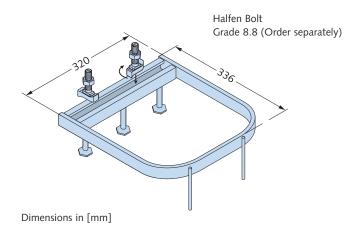

Product Range

HCW 52/34 with bolts and bracket

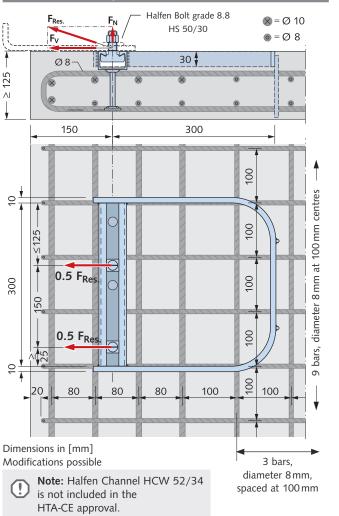


4

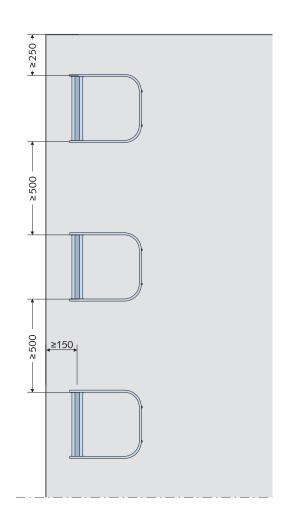
HALFEN CURTAIN WALL SUPPORT SYSTEMS


Halfen Channel HCW 52/34

Typical installation



Product description


Identification: HCW 52/34 **Material**: hot-dip galvanized

Reinforcement requirements

Edge and element spacing

HALFEN CURTAIN WALL SUPPORT SYSTEMS

Halfen Cast-in Channel HCW 52/34

Channel load data

The following load failure were averaged from three tests:

F _{V failure}			= 142.3 kN
F _{N failure}			= 47.4 kN
F _{res,failure}	=	$\sqrt{F_N^2 + F_V^2}$	= 150.0 kN

The load deformation diagram (see right) may be used to determine allowable loads based on acceptable displacement and the required safety factor according to local building codes. The diagram is based on the following:

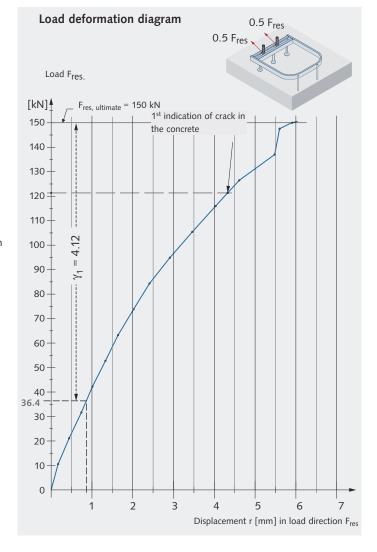
- tensile and transverse loads were increased at a ratio of 1:3 up to breaking point
- concrete slab thickness ≥ 125 mm and reinforcement as shown on page 48
- concrete strength class ≥ C 20/25 N/mm²
- load is transferred into the channel via two HALFEN Bolts HS 50/30 M20 Grade 8.8. The bolt spacing is 150 mm. A sample calculation is shown below

The safety factor is freely selected. However, it must be determined which factors are actually to be implemented, whether these are based on project specific boundary condition or on valid building regulations.

Calculation example: Assumed safety factor v = 3 (failure test load / working load)

Average failure load from the tests:

Actual working loads at bolts (specification by façade engineer):


Transverse tensile stress $F_V = 35 \text{ kN}$ Tensile stress $F_N = 10 \text{ kN}$

Allowable load with ν = 3 against average ultimate load from tests:

Control: Working load $F_V = 35 \text{ kN} < 47.4 \text{ kN}$ Working load $F_N = 10 \text{ kN} < 15.8 \text{ kN}$

Working load $F_{res} = \sqrt{(10)^2 + (35)^2} = 36.4 \text{ kN} < 50 \text{ kN}$

Displacement at working load < 1 mm (see diagram). Actual safety factor for average ultimate load γ_1 = (150/36.4) = 4.12.

Corresponding Halfen Bolts HS 50/30

Depending on the load size, we also recommend using HALFEN Bolts HS 50/30 M16 or M20, grade 8.8 in combination with HALFEN Cast-in channel HCW 52/34.

The bolts stated below are hot-dip galvanized. Other bolt sizes and materials can be supplied. Please contact us for detailed information. Addresses can be found at the end of this catalogue.

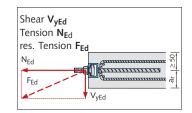
Type selection HALFEN Bolts HS 50/30 FV Grade 8.8										
Thread	Material grade	Available length L [mm]	Allowable resulting bolt load (all directions) perm. F _s [kN]	Allowable bending moment [Nm]	Recommended torque [Nm]	1				
M 16	8.8	40, 60, 80, 100	36.1	111	60					
M 20	8.8	45, 60, 80, 100	56.4	216	120					

If the bolt is stressed in the direction of a slot its load capacity must be verified taking bolt flexure into account.

4

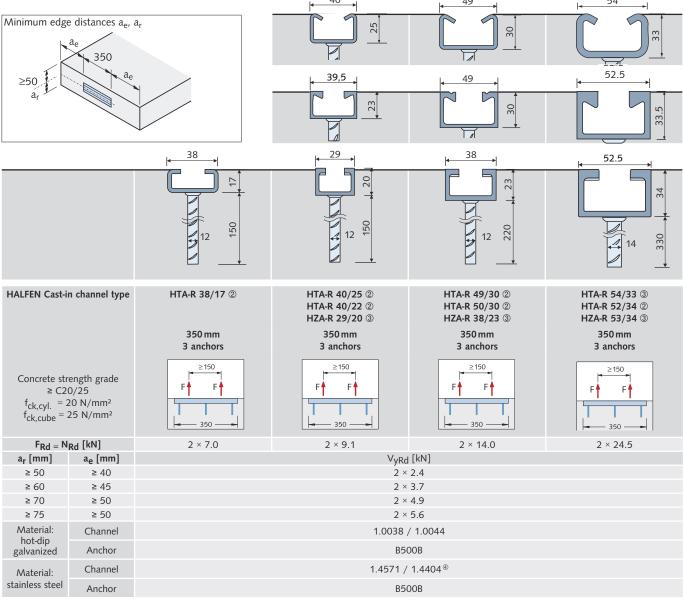
HALFEN CURTAIN WALL SUPPORT SYSTEMS

Halfen Cast-in Channels with Rebar Anchor HTA-R and HZA-R


Design basics

Structural analysis

Material resistance Design load


Material resistance shear $V_{yRd} \ge V_{yEd}$ Material resistance tension $N_{Rd} \ge N_{Ed}$

Material resistance resulting diagonal pull $F_{Rd} \ge F_{Ed} = \sqrt{N_{Ed}^2 + V_{V,E}}$

Halfen Channels HTA-R and HZA-R — Design values for material resistance

The minimum edge distance shown in the table applies to reinforced concrete

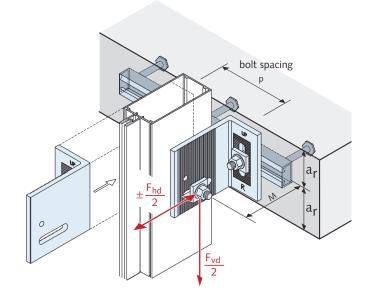
② Material 1.0038, ③ Material 1.0044, ④ Not available for Halfen Cast-in channels HZA-R 29/20 Notes: HALFEN Cast-in channels HTA-R / HZA-R are not included in the HTA-CE/HZA approval

Other channel lengths from 150-6070 mm are available

HALFEN CURTAIN WALL SUPPORT SYSTEMS

Edge of Slab Brackets HCW-ED Post and Beam Façades

Application example


Halfen Edge of slab brackets are connected in pairs, one each side of the mullion, and are available in two types:

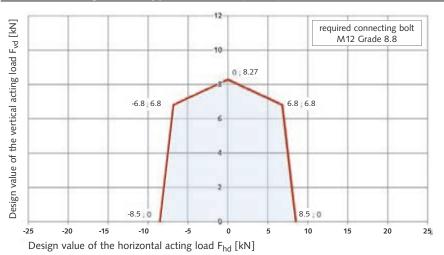
- > Type HCW-ED Brackets are designed to support both vertical and horizontal loads.
- > Type HCW-EW Brackets are designed to support only horizontal wind loads.

The brackets guarantee a simple adjustable connection. The HALFEN Bolts (connection: bracket to HALFEN Channel) and the standard hexagonal bolts M12 (connection: bracket to façade mullion) must be grade strength 8.8.

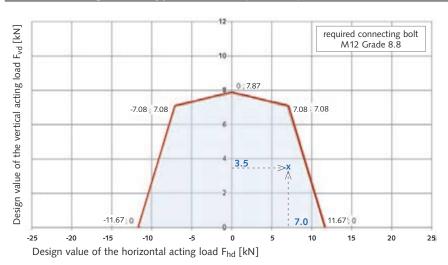
A round auxiliary hole in the long arm of the brackets can be used for temporary attachments. For example; temporary fixing of brackets to support the post with self-tapping screws until the final connection is made.

The brackets are made of high quality aluminium material. Special nylon discs are placed between the "Wind load" Bracket HCW-EW and support post.

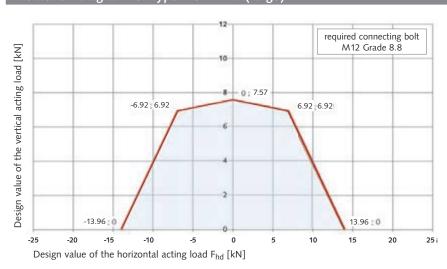
To guarantee correct installation, the HCW-ED brackets are marked `R' for right, `L' for left and `UP' for top.

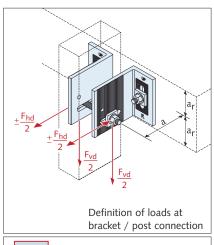


4


HALFEN CURTAIN WALL SUPPORT SYSTEMS

Dimensioning


Interaction diagram for type HCW-ED1 (small)


Interaction diagram for type HCW-ED2 (medium)

Interaction diagram for type HCW-ED3 (large)

Calculation basis

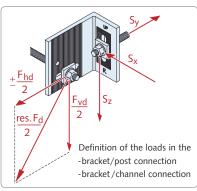
Permitted load interaction area

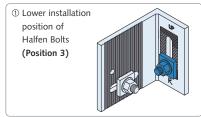
HALFEN CURTAIN WALL SUPPORT SYSTEMS

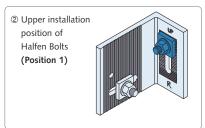
Design Loads using two HCW-EW Brackets, Loads in the Halfen Bolts (HCW-ED)

Design wind loads for type HCW-EW

Max. applied design load F _{hd} [kN]								
Size	Bracket code	max. F _{vd} [kN]	max. F _{hd} [kN]					
Small	HCW-EW 1	0	8.5					
Large	HCW-EW 3	0	13.96					


HCW-EW Brackets are only suitable for wind loads.


Forces acting on the T-head bolts at the channel (HCW-ED)


The components of the design-reaction forces in the HALFEN Bolts at the connection of the curtain wall bracket to HALFEN Cast-in channel, are calculated by multiplying the design loads F_{vd} and F_{hd} at connection curtain wall bracket and façade support post with the factors s_x , s_y and s_z . The factors are dependent on the bracket geometry, the load direction and the bolt position (see figure on the right). See table below for multiplication factors for determining the design reaction forces in the Halfen Bolts.

Lower insta	Lower installation position of Halfen Bolt (Position 3)											
	Dead load				Wind load		Resulting load 45°					
	S _i =	$(F_{vd}/2)$	× s _i	S _i =	(F _{hd} / 2)	× s _i	S _i = (res. F _d / 2	2) × s _i			
Bracket	s_{x}	s _y	s _z	S _X	s _y	Sz	s _x	s _y	s _z			
HCW-ED 1	0.5	3.2	-1.0	-1.0	1.0	0.0	-0.3	3.0	-0.7			
HCW-ED 2	0.5	3.6	-1.0	-0.5	1.0	0.0	0.0	3.3	-0.7			
HCW-ED 3	0.5	4.0	-1.0	-0.4	1.0	0.0	0.1	3.5	-0.7			
Upper inst	allation p	osition of	Halfen Bo	lt (Positio	on 1)							
HCW-ED 1	0.6	1.3	-1.0	-1.0	3.6	0.0	-0.3	3.4	-0.7			
HCW-ED 2	0.6	1.6	-1.0	-0.5	3.1	0.0	0.0	3.4	-0.7			
HCW-ED 3	0.6	1.9	-1.0	-0.4	2.9	0.0	0.1	3.4	-0.7			

Calculation basis

Calculation example

Assumed: slab thickness = $200 \, \text{mm}$, width of mullion = $80 \, \text{mm}$, projection a = $80 \, \text{mm}$ (install. position see page 50) design dead load $F_{vd} = +3.5 \, \text{kN}$

design wind load (wind suction) $F_{hd} = +7.0 \text{ kN}$

Selected: Halfen Bracket type HCW-ED 2

- \Rightarrow possible projection M = 82 \pm 25 mm
- ⇒ Interaction diagram type HCW-ED 2 (see page 52) proves that the assumed load is within the permitted load interaction zone

Determination of the design reaction forces in a Halfen Bolt

① Lower installation position (Position 3)

 $S_x = (3.5/2) \times 0.5 + (7/2) \times (-0.5) =$ -0.88 kN $S_y = (3.5/2) \times 3.6 + (7/2) \times 1.0 =$ +9.80 kN $S_z = (3.5/2) \times (-1.0) + 0 =$ -1.75 kN

 $\Rightarrow \text{Resulting bolt load}$

res. $S_d = \sqrt{(-0.88)^2 + (9.80)^2 + (-1.75)^2} = 9.99 \text{ kN}$ per bolt

2 Upper installation position (Position 1)

 $S_X = (3.5/2) \times 0.6 + (7/2) \times (-0.5) =$ -0.70 kN $S_Y = (3.5/2) \times 1.6 + (7/2) \times 3.1 =$ +13.65 kN $S_7 = (3.5/2) \times (-1.0) + 0 =$ -1.75 kN

⇒ Resulting bolt load

res. $S_d = \sqrt{(-0.70)^2 + (13.65)^2 + (-1.75)^2} = 13.78 \, kN$ → each bolt → determining factor for bolt selection Selected HALFEN Channel:

HTA-R 50/30 - 350 - 3 Anchor - FV see page 50

with $V_{yRd} = 2 \times 5.6 \text{ kN} > 2 \times |S_z| = 2 \times 1.75$

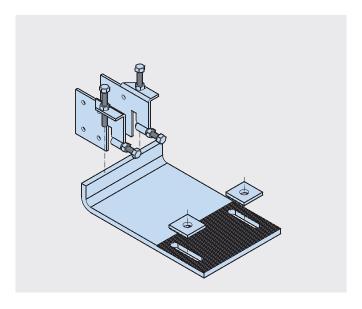
r = /511111)

 $F_{Rd} = 2 \times 14.0 \text{ kN} > 2 \times \text{res. } S_d = 2 \times 13.78 \text{ kN}$

Check: bolt spacing: $P = 80 + 2 \times 36 = 152 \text{ mm}$

Selected HALFEN Channel: > 150 mm

HS 50/30 - M12 × 60 FV 8.8

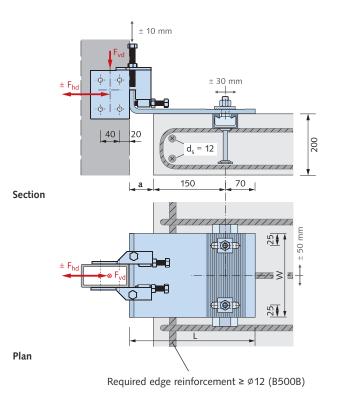

Requirement according to interaction diagram see page 52

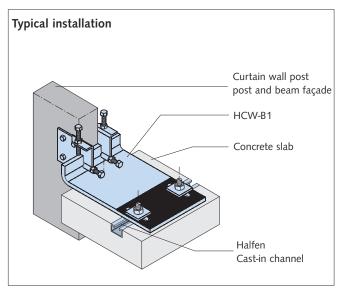
4

HALFEN CURTAIN WALL SUPPORT SYSTEMS

Top of Slab Brackets HCW-B1

Support brackets for horizontal and vertical loads




Halfen Brackets HCW-B1

Halfen Brackets HCW-B1 for installing to the top of concrete slabs, are available in two load ranges and three cantilever sizes.

The brackets are made in grade S355 quality galvanized steel. Vertical adjustability is $\pm 10 \, \text{mm}$.

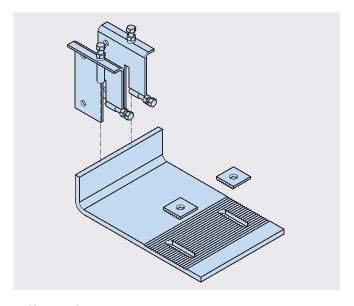
Three-dimensional adjustability is ensured when used in combination with Halfen HTA-CE Cast-in channels.

The lateral connecting plates are connected to the façade posts using M8 screws (not included). The façade planner is responsible for providing the static verification for the support posts. Use M16 Halfen Bolts, grade 8.8 (order separately), to connect the base bracket to the Halfen Castin channel. Depending on the façade type, the connection between the connecting plate and the base bracket can be designed either laterally adjustable or as a fixed point.

Dimensioning / Type selection

Design load ran	ges	
Load range [kN]	dead load F_{vd} [kN]	wind load F _{hd} [kN] (wind suction + compression)
4/12	4	±12
7/20	7	±20

 F_{vd} , F_{hd} : allowable design loads with a partial safety factor γ_F = 1.35 for dead load and γ_F = 1.5 for wind load.

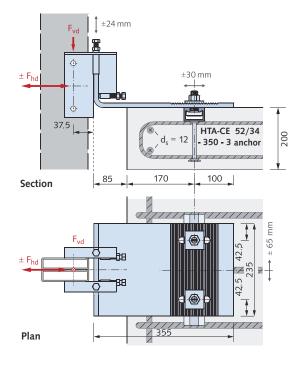

Type selection											
Load range [kN]	a [mm]	Item name HCW-B1	L [mm]	W [mm]	HALFEN Channel ①	Recommended Halfen Bolt					
	50	4/12-50	270	150	HTA-CE	HS 40/22					
4/12	75	4/12-75	295	150	40/22P-250	M16×60					
	100	4/12-100	320	150	2 Anchors	8.8					
	50	7/20-50	270	175	HTA-CE	HS 50/30					
7/20	75	7/20-75	295	175	50/30P-300	M16×60					
	100	7/20-100	320	200	3 Anchors	8.8					

① Recommended HALFEN Channel exploiting full load capacity of bracket

HALFEN CURTAIN WALL SUPPORT SYSTEMS

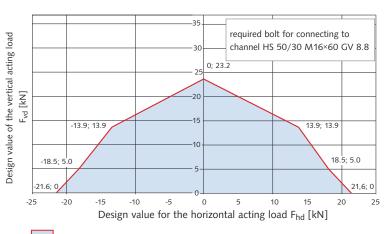
Top of Slab Brackets HCW-B2

Brackets for horizontal and vertical loads


Element in the curtain wall modular façade HCW-B2 Concrete slab Halfen Cast-in channel

Typical installation

Halfen Brackets HCW-B2


Halfen Brackets HCW-B2 are made in grade S355 quality galvanized steel. The vertical adjustability is $\pm 24\,\mathrm{mm}$. Three-dimensional adjustability is ensured when used in combination with Halfen Cast-in channels HTA-CE. The lateral connecting plates are connected to the façade posts using M12 screws (not included in delivery).

The façade planner is responsible for providing the static verification for the support posts. Use M16 Halfen Bolts, grade 8.8 (order separately), to connect the base bracket to the Halfen Cast-in channel. Depending on the façade type, the connection between the connecting plate and the base bracket can be designed either laterally adjustable or as a fixed point.

Required edge reinforcement $\geq \emptyset$ 12 (B500B)

Dimensioning

Allowable load interaction area

HGB HANDRAIL CONNECTIONS

The benefits at a glance

Construction specialists consider the Halfen HGB Handrail connections to be particularly suited for fastening railings and banisters to the thin front faces of balcony slabs

Halfen HGB Handrail connections profile HGB E-40/25-A4

Safe and reliable

- > statically verified installation
- > no damage to visible surfaces of concrete slabs
- > also suitable to secure mandatory safety rails during construction (Refer to: EN 795 "Guard rails")
- > use with Halfen high-strength bolts to ensure a relible and statically sound connection of railing/banister components

Fast and cost-effective

- > adjustable anchorage
- > can also be used in slabs as thin as $h \ge 100 \, \text{mm}$
- > installed with bolts instead of welding or drilling
- > pre-planning reduces on-site construction time
- > all attached components remain fully adjustable or are easily replaced as required

HALFEN HGB HANDRAIL CONNECTIONS

Application Examples

SAFETY BARRIERS IN STADIUMS

①-④: Safety barrier installation, multi purpose arena in Berlin

Fixing of safety rails, Rheinenergiestadion Cologne

Fixing of safety rails, Rheinenergiestadion Cologne

RAILINGS

Used to secure safety rails during the construction phase

Cast-in HGB Channel, residential building

HALFEN HGB HANDRAIL CONNECTION

General

Regulatory requirements

Balconies are part of the structural system. "They must be designed, constructed, maintained and modified in such a fashion that public order and safety, especially to health or life, is not endangered". Model building code and construction guidelines (Musterbauordnung MBO 2020 und Ausführungsvorschriften).

Technical guidelines issued by public notice as technical building regulations must be observed.* Technical rules provide information on load parameters, calculation, dimensioning of structural

products, construction types, structural layouts etc. A requirement of regional building codes refers to structural stability: "All structures must, as a whole and in their individual components, be structurally self-supporting". This stability must be statically verifiable based on current technical standards.

A further building regulation addresses traffic loads, for example: Balconies and loggias must be fitted with safety rails to prevent falls when they border on to an area with a drop of more than one metre. For a drop height up to 12 m

the minimum railing height is 0.90 m measured from the upper surface of the finished floor surface or accessible ledge. For drop heights greater than 12 m the banister height must be at least 1.10 m. For exceptions see the German federal building regulations/Deutsche LandesBauOrdnung.

Other regulations, not covered here, address the design, dimensioning, required spacings in the guard rail design, fire protection, thermal/sound insulation and rainwater drainage.

Regulations, standards and directives (to be observed when designing safety rails)

Regional Building Codes

VOB — Part B, § 4, execution of construction:

BVM Directive

Other applicable regulations and standards (Extract):

Individual regional states have their own building codes and regulations. All current technical regulations require proof of structural safety and integrity. A static calculation or a building authority certificate is required when designing and dimensioning the fixings for guard rails.

§ 4.2 (1) It is the contractor's responsibility to provide the static documentation in accordance with the contract. He has to observe the recognized standards of practice as well as with the provisions of the law and regulatory directives. Tender and Contract Regulations for the German building industry (*VOB Vergabe- und Vertragsordnung für Bauleistungen*) Part B, § 4.3, requires the contractor to report to the customer, in writing, any obvious design flaws, which he as the expert must be able to recognize. He alone is responsible for any resulting defect and consequential expenses. If he has satisfied his reporting obligation, the responsibility for the defect passes to the customer (defect example: banister attachment mounted in a concrete slab which is too thin).

Directive on metal railings/banisters/balustrades, published by Federal Association of German Metalworkers (*BVM Berufsverband Metall*).

- > Accident Prevention Regulation "General Provisions" (DGUV Regulation 1)
- > Industrial Safety Regulations
- > ETB Directive "Fall Prevention Installations", Publ. 1985
- > Stainless Steels, EC3 part 1-4

EN 1992-1-1 (EC2): Design and construction of concrete support structures; with

National Annex (NA)

EN 1991 (EC1): General effects on load structures;

with National Annex (NA)

EN 1993 (EC3): design and construction of steel structures;

with National Annex (NA)

^{*}issued by the highest construction supervision authorities of the German Federal States

HALFEN HGB HANDRAIL CONNECTION

Materials/Corrosion Protection

Stainless Steel A4:

Chromium is the most important alloy element in stainless steel. A specific chromium concentration ensures the generation of a passive layer on the surface of the steel that protects the base material against corrosion. This explains the high corrosion resistance of stainless steel.

"Anchor channels in stainless steel may be used outdoors — also in an industrial and coastal environment, but may not be directly exposed to salt water".

See guidelines for "Metal railings, banisters and balustrades" issued by the German Association of Metalworkers (*BVM Bundesverband der Metallverarbeiter*).

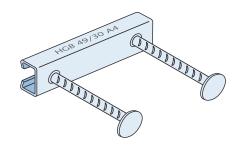
Halfen Cast-in channels, stainless steel									
	Description		Stainless steel						
Talo		Materials		Standard	Corrosion resistance class according to EN 1993-1-4, table A.3				
	Channel profile	1.4404 or 1.4571		EN 10 088	III				
	Ribbed-head anchor	Reinforcing steel B500B Reinforcing steel BSt 500 NR		DIN 488					

Halfen Bolts, stainless s	Halfen Bolts, stainless steel									
		Description	Description Stainless steel							
			Materials		Standard	Corrosion resistance class according to EN 1993-1-4, table A.3				
		Bolt	A4-70: 1.4404 or 1.4571		EN 3506-1 and EN 10 088	Ш				
		Hexagonal nut	A4-70: 1.4404 or 1.4571		EN 3506-2 and EN 10 088	Ш				
		Washer	1.4404 or 1.4571		EN 10 088	III				

☐ **WB** = Steel mill finish

■ A4 = Stainless steel

Available on request:


Galvanized material for interior, dry rooms, for instance when installing staircase railings and banisters in residential buildings, schools or commercial retail stores.

Hot-dip galvanized FV:

Dipped in a galvanizing bath, with a temperature of approx. 460 °C; this method will primarily be used for your requested channels and bolts.

Identification of Halfen HGB Cast-in channels

Product identification

- > on channel side
- > additionally inside the profile

HALFEN HGB HANDRAIL CONNECTION

Product Range

Halfen HGB Cast-in channels and bolts										
Item description	Di	mensions	HGB-E [[mm]	Dim	ensions l	HGB-EE [mm]	Halfen	HS Bolts
I de	d _A		h _A	dd						
	I	d _A	h _A	Weight kg/each G	l ₁ / l ₂	d _A	h _A	Weight kg/each G	Type / FK	Dimensions
HGB E - 54/33-A4	100 150 200	14	200	1.071 1.307 1.543	170/170	14	250	2.262	HS-50/30 A4-70	M12×40 M16×50
HGB E - 49/30-A4 B500B	100 150 200	12	110	0.704 0.855 1.007	170/170	14	150	1.501	HS-50/30 A4-70	M12×40 M16×50
HGB E - 40/25-A4	100 150 200	10	90	0.611 0.717 0.822	170/170	14	90	1.042	HS-40/22 A4-70	M12×40 M16×40
HGB E - 38/17-A4 B500B/A NR (BSt 500 NR)	100 150 200	10	201	0.824 0.911 0.999	170/170	12	201	1.214	HS-38/17 A4-70	M12×40 M16×40

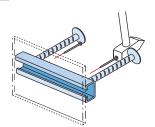
■ A4=Stainless steel 1.4571/1.4404 Alternative for interior use (on request) ■ FV=Steel hot-dip galvanized 1.0038/1.0044


Ordering and materials

Ordering example HGB channel:

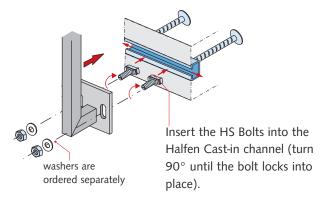
HGB-E-49/30 - 200 - A4

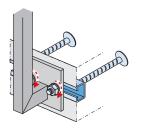
material
length [mm]
description


Ordering example Halfen Bolt:

HALFEN HGB HANDRAIL CONNECTION

Installation/Assembly

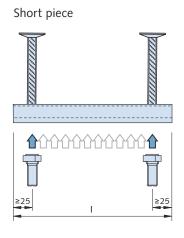

1 Nail the Halfen Cast-in channel to the formwork

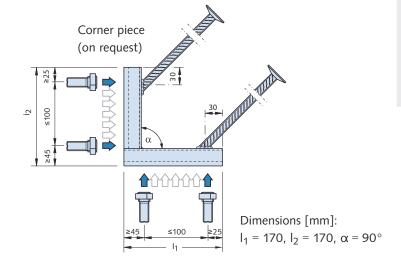

Where possible, use stainless steel nails to avoid corrosion.

After striking the formwork remove the foam filler from the Halfen Cast-in channels.

2 Installation and adjustment of balustrades

3 Tighten the bolts


Tighten the nuts using a torque wrench. See table on the right for torque values



Nail the Halfen Cast-in channel to the formwork

Railing bolts				
Stainless steel Material grade A4-70		Torque	[Nm]	
HS 50/30		M16	60	
for profile 49/30 and 54/33		M12	25	
HS 40/22		M16	45	
for profile 40/25		M12	25	
HS 38/17		M16	40	
for profile 38/17		M12	25	

Fixing position of the bolts

HALFEN HGB HANDRAIL CONNECTION

Dimensioning Fundamentals

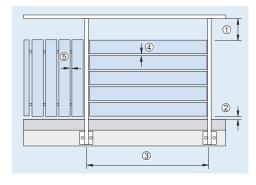
Railing height

The minimum height h_b of a railing is 0.90 m from the top surface of the finished floor or accessible ledge to the upper edge of the rail. For drop heights of more than 12.0 m the railing must be at least 1.10 m in height. (Exceptions; as specified in regional building codes)

It would be advisable to have one uniform minimum height of 1.00 m as has already been mandated in the commercial sector and in a number of European countries.

Balcony slab

Anchor channels or dowel installations require concrete of at least C 20/25 grade. A case-by-case decision must be made if the concrete grade is less than C 20/25 grade or is unknown.


The thickness of the balcony slab must be at least $h = 100-150 \, \text{mm}$ when the HGB is cast in the slab edge (depends on channel profile and according to the German HGB approval). Other types of installation and systems require a thicker slab. All weather-exposed concrete-embedded installations (e.g. for balconies) must be made of stainless steel.

Rail height h_b

b = clear distance between the back of the balcony cladding and the front face of the balcony slab or gutter/kick plate

Spacings

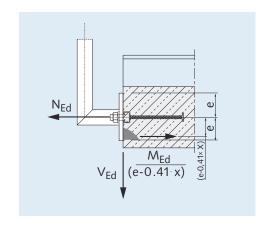
Any structural design must take all basic requirements for railings and banisters into account. As a general rule, all railings and banisters must be designed so that personal injury is ruled out, for instance with correct spacing of rails, lattice bars or panels. They should also be designed so as not to entice but instead to discourage anyone from climbing over. The specific requirements for guard rail design are determined by the intended use (residential, public, commercial) and the drop height involved. Also observe the building codes of each country or region, the ETB guidelines "Fall Protection Components" and DIN 18065 (Stairs in Buildings — definition, rules, key measurements) and guard rail regulation applicable at the construction site. In Germany these are the Guardrail regulations 2020 set by the German Association of Metalworkers, ("Geländer-Richtlinie 2020, BVM Berufsverband Metall").

- ① clear distance between bottom edge of hand rail and top edge of facing/lower structure
- ② clear distance between the top edge of the finished floor and the bottom edge of the facing lower structure
- 3 axis spacing between posts
- 4 clear distance between horizontal facings
- ⑤ clear distance between vertical facings

HALFEN HGB HANDRAIL CONNECTION

Dimensioning

Dimensions


The forces acting on the railing must be transferred into the main building structure. It is necessary to verify that the forces

- a) are wholly supported by the railing and
- b) can be transferred via the connecting elements into the balcony slab.

$$N_{Ed} = \frac{M_{Ed}}{(e - 0.41 \cdot x)} + H_{Ed}$$

 N_{Ed} = tensile force on the anchor

- e = distance between channel axis and outer edge of the railing base plate
- x = maximum concrete pressure zone level according to annex 8, table 8a and 8b

Railing heights

Drop height	Minimum height of rails (recommended)	Note
Less than 12 m	90 cm (100 cm)	Relevant regional building regulations and if necessary other regulations e.g.
Greater than 12 m	110 cm	for civil constructions must be observed.

Calculation

1. Railing/banister load h according to EN 1991-1-1/NA Table 6.12 DE

"Calculation must assume 100% traffic load in drop direction and 50% of traffic load (but not less than 0.5 kN/m) in the opposite direction."

for example: residential buildings and communal areas with low foot traffic	$q_k = 0.5 kN/m$
for example: rooms for mass assembly, commercial sales spaces, corridors	$q_k = 1.0 kN/m$
for example: areas for large gatherings of people, factories, workshops	$q_k = 2.0 \text{kN/m}$

2. Vertical loads v according to BVM* guidelines Load assumptions to calculate vertical loads are according to the BVM guidelines for guard rails/banisters.

from dead weight of structure including any renders	$v_1 = 0.40 \text{kN/m}$
from window box	$v_2 = 0.35 kN/m$
support capacity	$v_3 = 0.15 kN/m$

3. Wind loads

 $F_{\rm w}$ according to EN 1991-1-4 and EN 1991-1-4/NA

Velocity force q in kN/m^2 and total wind pressure F_w are calculated according to EN 1991-1-4 with EN 1991-1-4/NA.

^{*}German Association of Metalworkers (BVM Bundesverband der Metallverarbeiter)

10

ACCESSORIES

HALFEN HGB HANDRAIL CONNECTION

Dimensioning

Extract from HGB approval Z-21.4-1912, page 6

3.2.2 Actions and required verifications

The actions H_{Ed} , V_{Ed} , M_{Ed} and N_{Ed} have to be determined according to the calculation basics as in annex 7. The ratio in the design calculation between horizontal action and bending moment is limited to:

$$\frac{H_{Ed}}{M_{Ed}} \le 1.5 [1/m]$$
 $H_{Ed} [kN]; M_{Ed} in [kNm]$

It has to be verified that the design action value E_d does not exceed the design resistance value R_d:

 $E_d \le R_d$ see table 3.1 and 3.2 below

 E_d = Design action value (N_{Ed} , V_{Ed} , M_{Ed}) R_d = Design resistance value (N_{Rd} , N_{Rd} , M_{Rd})

For a standard case the following equation for the design action value applies (permanent load and variable load acting in the same direction):

 $E_d = \gamma_G \cdot G_k + \gamma_Q \cdot Q_k$

 $G_{k;}$ Q_k = characteristic value of permanent load or variable load according to recognized standards for load assumptions

 $\gamma_{G; \gamma_Q}$ = partial safety factors for permanent and variable action

Extract from HGB approval no. Z-21.4-1912, page 7

Table 3.1 Required verifications for tensile loads			
Steel failure			
Pull out failure	N _{Ed} ≤	≤ N _{Rd,s}	
Concrete failure with anchor reinforcement		\leq N _{Rd,s,s} (for single-bolt fixing) \leq 2 N _{Rd,s,s} (for two-bolt fixing)	
Spalling			

Table 3.2 Required verifications for shear loads		
Steel failure	$V_{Ed} \leq V_{Rd,s}$	
Concrete failure with anchor reinforcement	$\leq V_{Rd,s,s}$ (for single-bolt fixing) $\leq 2 V_{Rd,s,s}$ (for two-bolt fixing)	
Concrete edge failure with anchor	$V_{Ed} \le V_{Rd,c}$	
reinforcement	$M_{Ed} \leq M_{Rd,c}$	

With combined loads the following interactions must be verified:

1. max. (
$$N_{Ed} / N_{Rd,s}$$
)² + max. ($V_{Ed} / V_{Rd,s}$)² \leq 1.0 or max. ($N_{Ed} / N_{Rd,s}$) + max. ($V_{Ed} / V_{Rd,s}$) \leq 1.2

2.
$$M_{Ed}$$
 / $M_{Rd,c}$ + 1.5 V_{Ed} / $V_{Rd,c}$ ≤ 1.5 for 0.333 ≤ V_{Ed} / $V_{Rd,c}$ ≤ 1.0

HALFEN HGB HANDRAIL CONNECTION

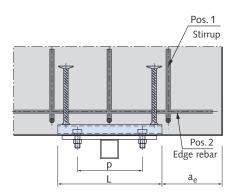
Dimensioning

Extract from HGB-approval no. Z-21.4-1912, annex 6

Table 6: Installation and anchor parameters					
			Anchor cha	nnels profiles	
Description	Illustration	38/17	40/22 40/25	50/30 49/30	52/34 54/33
A) Profile shape and bolt position	ing				
Minimum channel length required for a two-bolt fixing [mm]	annex 2	150	150	150	150
Minimum bolt distance p [mm]	see next page	80	80	80 (100) ①	80 (100) ①
B) Building element dimensions a	nd anchor position in the ele	ement			
Minimum thickness of concrete element h [mm]	annex 8	100	120	140	150
Minimum edge distance c_1 [mm] (channel axis to the upper and the lower edge of the concrete element)	annex 8	50	60	70	75
Minimum distance a_e [mm] to edge of concrete element (from end of channel)	see next page	40	45	50	50
C) Size and position of anchor pla	nte				
Minimum distance e [mm] from the channel axis to the upper and the lower edge of the anchor plate	e e e e e e e e e e e e e e e e e e e	30	30	35	37.5
Minimum distance a_1 [mm] from the upper and lower edge of the anchor plate to the upper and lower edge of the concrete element ②	a ₁	10	10	10	10
Minimum distance a_2 [mm] from the outer edge of the anchor plate to the edge of the concrete element		40	45	45	45

① The values in brackets apply when using M20 bolts ② In components with a weather groove, the bottom of the groove is regarded as the concrete element edge

HALFEN HGB HANDRAIL CONNECTION


Dimensioning

Extract; HGB approval no. Z-21.4-1912, annex 6

Table 7: Size and position of required minimum reinforcement					
Description	Anchor channels				
Description	38/17	40/25	49/30	54/33	
Stirrup / Quantity	3 Ø 8 I _b = 200 mm	3 Ø 8 I _b = 250 mm	3 Ø 10 I _b = 300 mm	3 Ø 12 I _b = 400 mm	
Edge rebar, top and bottom [mm]	Ø 8	Ø 8	Ø 10	Ø 12	

Required minimum reinforcement:

One stirrup is placed centrally between the channel anchors and one stirrup directly next to each anchor at the channel ends (if positioned near to the edge, between the anchor and component edge).

Extract; HGB approval no. Z-21.4-1912, annex 8

Table 9: Design resistance for each bolt					
	Tensile				
Bol	ts Ø	M12	M16	M20	
	4.6	16.9	31.4	49.0	
AL FLAIT	8.8	44.9	83.7	130.7	
N _{Rd,s,s} [kN]	A4-, HC-50	14.8	27.4	42.8	
	A4-70*	31.6	58.8	91.7	
Shear					
	4.6	12.1	22.6	35.2	
V [[.N.]]	8.8	27.0	50.2	78.4	
V _{Rd,s,s} [kN]	A4-, HC-50	10.6	19.8	30.9	
	A4-70*	22.7	42.2	66.0	
* Values also apply for all stainless stools of strength class 70					

Values also apply for all stainless steels of strength class 70 (see also HGB approval, annex 4)

Design resistance of concrete pressure zone

$$M_{Rd,c} = 0.81 \cdot x \cdot b \cdot \frac{f_{ck}}{\gamma_{Mc}} \cdot (e - 0.41 \cdot x)$$

where:

x = maximum height; concrete pressure zone (see table 8a and 8b)

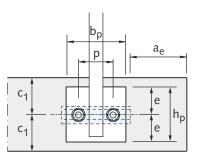
 $\begin{array}{lll} b & = & \text{width of pressure zone} = \text{width of anchor plate } b_p \\ f_{ck} & = & \text{characteristic compression strength of concrete in} \\ & & \text{accordance with EN 206-1:2001-07,} \\ & & \text{for concrete strength} \geq \text{C30/37 only calculate using} \end{array}$

e = distance between anchor channel axis and outer edge of the anchor plate (see illustration on page 67, table 8)

 γ_{Mc} = 1.5 (partial safety factor)

 $f_{ck} = 30 \text{ N/mm}^2$

HALFEN HGB HANDRAIL CONNECTION


Dimensioning

Extract, HGB-approval no. Z-21.4-1912, annex 8

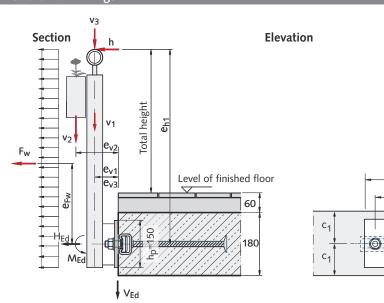
Table 8a: Design resistance of the channel using single-bolt fixing					
Chann	Channel type 38/17		40/25	49/30	54/33
	thickness of nt h [mm]	100	120 140		150
Steel failure (single-bolt fixing)					
Tension	N _{Rd,s} [kN]	10.0	11.1	17.2	30.6
Shear	V _{Rd,s} [kN]	10.0	11.1	17.2	30.6
Concrete failure (single-bolt fixing)					
$V_{Rd,c}$	[kN]	6.7	9.0	11.7	12.7
	n height of essure zone x	0.25 ⋅ e ^①	0.25 ⋅ e ^①	0.30 ⋅ e ^①	0.40 · e ^①

Table 8b: Design resistance of the channel using a two-bolt fixing					
Pro	ofile	38/17	40/25	49/30	54/33
	thickness of nt h [mm]	100	120	140	150
Steel failure (two-bolt fixing)					
Tension	N _{Rd,s} [kN]	15.0	16.7	25.8	45.8
Shear	V _{Rd,s} [kN]	15.0	16.7	25.8	45.8
	Concrete failure (two-bolt fixing)				
$V_{Rd,c}$	[kN]	6.7	9.0	11.7	12.7
	n height of essure zone x	0.25 ⋅ e ^①	0.25 ⋅ e ^①	0.30 ⋅ e ^①	0.40 ⋅ e ^①

Dimensioning example Halfen HGB Guard rail fittings

M_{Ed} = used to calculate applicable moment relative to the channel axis

 e_{V1} , e_{V2} , = distance of the vertical loads to e_{V3} the front edge of the channel


 e_{h1} , e_{Fw} = distance of the horizontal loads to the front edge of the channel

H_{Ed} = used to calculate the applicable horizontal effect

 V_{Ed} = used to calculate the applicable vertical effect

h, F_w = horizontal load effects v₁, v₂, v₃ = vertical load effects

 b_p , h_p = anchor plate width and height

 $[\]textcircled{1}$ e = distance between the anchor channel axis and outer edges of the anchor plate. For asymmetrical anchor plates the smallest distance to the outer edge of the anchor plate is used for calculation.

10

HALFEN HGB HANDRAIL CONNECTION

Calculation Example

Calculation example

Post spacing 1.5 m Post height from FFL 1.0 m

Structure height 9.0 m < 25.0 m

Railing/banister load 0.5 kN/m (residential buildings)

Concrete slab thickness 180 mm

Distance of channel axis to component edge $c_1 = 90 \, mm$ Width of railing/banister anchor plate $b_p = 150 \, mm$ Height of railing/banister anchor plate $h_p = 150 \, mm$

Bolt spacing p = 80 mmConcrete strength C30/37

Load

Vertical loads:

Dead load, railing/banister including siding $v_1 = 0.40 \, \text{kN/m}$ Dead load, flower box $v_2 = 0.35 \, \text{kN/m}$ Vertical traffic load on the railing/banister $v_3 = 0.15 \, \text{kN/m}$

Horizontal loads:

 $\begin{array}{ll} \mbox{Railing/banister load} & \mbox{$h = 0.50 \, kN/m$} \\ \mbox{Wind force} & \mbox{$q = 0.50 \, kN/m^2$} \\ \end{array}$

(according to EN 1991-1-4 NA.B.3)

(assumption: building height 9.0 m < 10:0 m, not prone to resonance frequency, inland wind zone 1)

Cantilevers:

$$e_{h1} = 1.0 + 0.06 + \frac{0.18}{2} = 1.15 \,\text{m}$$

$$e_{Fw} = \frac{(1.15 + 0.075)}{2} - 0.075 = 0.53 \, \text{m}$$

 $e_{v1} = 0.10 \, m$

 $e_{v2} = 0.20 \, \text{m}$

 $e_{v3} = 0.10 \, \text{m}$

Wind load bearing zone:

$$A = (1.00 + 0.06 + \frac{0.18}{2} + \frac{0.15}{2}) \cdot 1.5 = 1.84 \,\text{m}^2$$

External pressure coefficient (acc. to table 7.1 EN 1991-1-4):

h/d = 1, area B

 $c_{pe,1} = -1.1$ (wind-suction)

 $c_{pe,10} = -0.8$ (wind-suction)

according to EN 1991-1-4 chapter 7.2.1

the following is valid:

 $1 \, \text{m}^2 < A \le 10 \, \text{m}^2$

$$c_{pe} = c_{pe,1} + (c_{pe,10} - c_{pe,1}) \cdot lg A = -1.1 + (-0.8 + 1.1) \cdot lg 1.84 = -1.02$$

Wind suction:

 $F_w = c_{pe} \cdot q \cdot A = -1.02 \cdot 0.50 \cdot 1.84 = -0.94 \, kN$

Action per support:

Wind load $F_{w,Ed} = -0.94 \cdot 1.5 = -1.41 \text{ kN (suction)}$

with $\gamma_F = 1.5$

Railing/banister $H_{Ed} = 0.5 \cdot 1.5 \cdot 1.5 = 1.13 \text{ kN}$

with $\gamma_F = 1.5$

Dead load $V_{1Ed} = 0.40 \cdot 1.5 \cdot 1.35 = 0.81 \, kN$

railing/banister with $\gamma_F = 1.35$

Load from $V_{2Ed} = 0.35 \cdot 1.5 \cdot 1.35 = 0.71 \, \text{kN}$

flower box with $\gamma_F = 1.35$

Vertical load on $V_{3Ed} = 0.15 \cdot 1.5 \cdot 1.5 = 0.34 \text{ kN}$

railing/banister with $\gamma_F = 1.5$

Determining bearing reactions H_{Ed}, V_{Ed} and M_{Ed}

Not classed as an utility (escape-route) balcony therefore combination with wind load is not required.

Load case 1: V + railing/banister load

 $M_{Ed} = 0.81 \cdot 0.10 + 0.71 \cdot 0.20 + 0.34 \cdot 0.10 + 1.13 \cdot 1.15$

= 1.56 kNm

 $V_{Ed} = 0.81 + 0.71 + 0.34 = 1.86 \, kN$

 $H_{Ed} = 1.13 \, kN$

Load case 2: V + wind

 $M_{Ed} = 0.81 \cdot 0.10 + 0.71 \cdot 0.20 + 1.41 \cdot 0.53 = 0.97 \text{ kNm}$

 $V_{Ed} = 0.81 + 0.71 = 1.52 \, kN$

 $H_{Ed} = 1.41 \, kN$

Selected:

HGB-E 49/30, I = 200 mm, A4 stainless steel

Bolt spacing p = 80 mm

2 bolts HS 50/30 M12, A4-70,

Required minimum reinforcement:

Stirrups 3 Ø 10, $I_b = 300 \, \text{mm}$

(see page 66 approval extract → annex 6, table 7),

Edge rebar 2 Ø 10

Splitting the moment into a load pair

$$N_{Ed} = \frac{M_{Ed}}{(e - 0.41 \cdot x)} + H_{Ed}$$

 $e = \frac{h_p}{2} = 75 \,\text{mm}$ (see approval no. Z-21.4.1912 annex 7)

 $x = 0.30 \cdot e = 0.30 \cdot 75 = 22.5 \,\text{mm}$

see page 67 (approval extract → annex 8/table 8b)

 $e - 0.41 \cdot x = 75 - 0.41 \cdot 22.5 = 65.8 \, mm$

HALFEN HGB HANDRAIL CONNECTION

Calculation Example

Load case 1: V + railing/banister load

$$N_{Ed} = \frac{1.56 \, kNm}{0.0658 \, m} + 1.13 \, kN = 24.84 \, kN \rightarrow decisive$$

 $V_{Ed} = 1.86 \, kN \rightarrow decisive$

Load case 2: V + wind

$$N_{Ed} = \frac{0.98 \, kNm}{0.0658 \, m} + 1.41 \, kN = 16.30 \, kN$$

 $V_{Ed} = 1.52 \, kN$

Verifications

Geometrical boundry conditions according to approval Z-21.4-1912 annex 6, table 6 have been met.

Verification of steel capacity

Design resistance (steel) channel HGB 49/30 using 2 bolt fixing

 $N_{Rd,s} = 25.8 \, kN$ see page 67 (approval extract \rightarrow $V_{Rd,s} = 25.8 \, kN$ annex 8, table 8b)

Channel, centric pull load

$$\frac{N_{Ed}}{N_{Rd,s}} = \frac{24.84}{25.8} = 0.96 < 1$$

Channel, shear load

$$\frac{V_{Ed}}{V_{Rd,s}} = \frac{1.86}{25.8} = 0.07 < 1$$

Channel, interaction

$$\left(\frac{N_{Ed}}{N_{Rd,s}}\right)^2 + \left(\frac{V_{Ed}}{V_{Rd,s}}\right)^2 = \left(\frac{24.84}{25.8}\right)^2 + \left(\frac{1.86}{25.8}\right)^2$$
$$= 0.93 + 0.01 = 0.94 < 1$$

Design resistance (steel) bolt M12, A4-70

 $N_{Rd,s,s} = 31.6 \, kN$ see page 66 (approval extract \rightarrow $V_{Rd,s,s} = 22.7 \, kN$ annex 8, tab.9)

Bolt, centric pull load

$$\frac{0.5 \cdot N_{Ed}}{N_{Rd,s,s}} = \frac{0.5 \cdot 24.84}{31.6} = 0.39 < 1$$

Bolt, shear load

$$\frac{0.5 \cdot V_{Ed}}{V_{Rd,s,s}} = \frac{0.5 \cdot 1.86}{22.7} = 0.04 < 1$$

Bolt, interaction

$$\left(\frac{0.5 \cdot N_{Ed}}{N_{Rd,s,s}}\right)^2 + \left(\frac{0.5 \cdot V_{Ed}}{V_{Rd,s,s}}\right)^2 = 0.39^2 + 0.04^2 = 0.15 < 1$$

Verification of concrete capacity

Design resistance concrete

 $V_{Rd,c}$ = 11.7 kN see page 67 (annex 8, table 8b) $M_{Rd,c}$ = 0.81 · x · b · $\frac{f_{ck}}{\gamma_{Mc}}$ · (e - 0.41 · x)

 $M_{Rd,c} = 0.81 \cdot 22.5 \cdot 150 \cdot \frac{30}{1.5} \cdot 65.8 = 3597615 \text{ Nmm}$

 $= 3.60 \, kNm$

Concrete edge failure

$$\frac{V_{Ed}}{V_{Rd,c}} = \frac{1.86}{11.7} = 0.16 < 1$$

$$\frac{M_{Ed}}{M_{Rd,c}} = \frac{1.56}{3.60} = 0.43 < 1$$

 $\frac{V_{Ed}}{V_{Rd,c}}$ = 0.16 < 0.333 \rightarrow According to the approval verification of interaction is not required, see page 64 (approval extract/page 7).

Verifying the ratio between horizontal action and bending moment

$$\frac{H_{Ed}}{M_{Ed}} = \frac{1.13 \, \text{kN}}{1.56 \, \text{kNm}} = 0.72 < 1.5$$

 → Design model is applicable see page 64 (approval extract/page 6)

HALFEN HTU-S CAST-IN CHANNEL FOR FIXING PROFILED SHEET METAL

The benefits at a glance

The Halfen HTU-S Cast-in channel is ideal for fixing all types of profiled sheets — easy and simple with self-drilling screws. Suitable for both shear loads and tension loads.

Thanks to the innovative channel design with its corrugated sides and filler, the new generation of Halfen HTU Cast-in channel is installed entirely in the required concrete cover. This avoids any problem with the required reinforcement.

Safe and reliable

- innovative geometry and corrugated edging ensure reliable anchorage
- > polystyrene filler prevents the self-drilling screw from hitting concrete
- > building authority approved
- > the type stamp on the channel back ensures identification after installation

Efficient and economical

- > simple installation in the required concrete cover
- > one channel type irrespective of the reinforcement layout
- > simple installation in the precast plant

Fixing of trapezoidal sheet metal roof element

Façade fixed using Halfen HTU Cast-in channels (Cologne Bonn Airport)

HALFEN HTU-S CAST-IN CHANNELS

General/Product Range

The Halfen Cast-in channel for fixing trapezoidal sheet metal has a U-shaped cross-section with the sides angled outwards. The corrugated sides of the channel provide a positive-lock with the concrete.

Both HTU-S Channel types (60 and 100mm) allow various bolt fixing and layout options. Halfen HTU-S Cast-in channels are building authority approved.

Approval: DIBt no. Z-21.4-2096

Fixing trapezoidal sheet metal using self-drilling screws

Area of application	Fixing of trapezoidal sheeting or wall-cladding elements using building authority or ETA approved self-drilling screws. Installed flush with the surface of precast concrete elements; concrete strength C25/30 up to C50/60, cracked or non-cracked.
Materials/corrosion protection	HTU Channel made of zinc-plated steel may be installed in environments of C1 to C3 corrosion category acc. to EN ISO 12944-2:2018-04.

Available lengths:


HTU-Channels are available in 3000 or 6000 mm lengths.

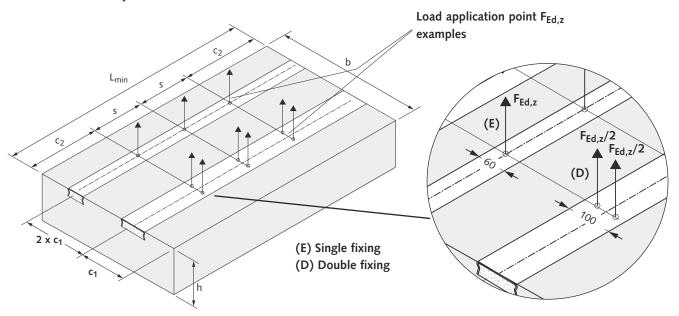
Order example HTU-S Channel, width 60 mm : HTU 60/25/2,5-S 6000

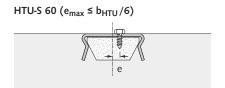
length [mm] product name

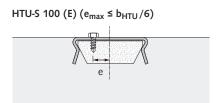
Identification

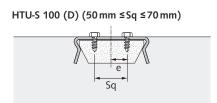
Original Halfen Cast-in channels for fixing trapezoidal sheet metal can be identified by the stamp on the back of the channel displaying the brand name and the product description `Halfen HTU´.

Detailed installation instructions for the self anchoring Halfen HTU-S Channel can be found at: www.halfen.com ▶ Brochures ▶ Installation Instructions ▶ Fixing systems


HALFEN HTU-S CAST-IN CHANNELS


Dimensioning


Anchorages must to be planned in accordance with engineering standards. Verification of direct local force transmission from the channel into the concrete has been provided if the approved values are complied with. Connecting accessories must be verified separately. Technical design must comply with building authority approval no. Z-21.4-2096.


Load directions $\mathsf{F}_{\mathsf{Ed},\mathsf{Z}}$ $\mathsf{F}_{\mathsf{Ed},\mathsf{Q}} \sqcup$

Constructive boundary conditions

Minimum element dimensions, bolt spacings and load resistances for concrete strength class C30/37 to C50/60 ^{©®}								
Channel	L _{min}	(E) Single (D) Double fixing	b _{min}	h _{min} [@]	C _{1,min} ⁴	C _{2,min}	S _{min}	F _{Rd} ① ② ③
	[mm]		[mm]	[mm]	[mm]	[mm]	[mm]	[kN]
HTU 60/25/2,5-S	150	E	2 x c ₁	200	90	75	150	3,6
	250	E				125	250	4,9
	310	E				155	310	5,7
HTU 100/25/3-S	150	E	2 x c ₁	200	120	75	150	2,4
		D						4,2
	250	E				125	250	3,5
		D						6,0
	310	E				155	310	4,2
		D						7,1

- ① Resistance F_{Rd} applies for all load directions. The permanent load of $F_{Ed,z}$ must be limited to 0.15 \cdot F_{Rd} .
- ② For concrete strength class C25/30 the resistances must be reduced with factor 0.91.
- \$ For concrete strength class > C30/37 the resistance F_{Rd} may be increased by Ψc acc. to (annex 5, table 1 and annex 6, table 2)
- ④ For HTU 60/25/2,5-S lower values are allowed. See approval annex 5, table 1.

HALFEN HTU CAST-IN CHANNELS

C-shaped Channels with Welded Anchors

The Halfen Trapezoidal sheet metal installation channels were developed in cooperation with the Association for the light-weight steel construction industry (IFBS Industrieverband für Bausysteme im Stahlleichtbau).

Made as a C-shaped channel in hot-dip galvanized steel with at least two welded anchors, and approved by the German Institute of Building Technology (DIBt Deutsches Institut für Bautechnik).

Approval: DIBt no. Z-21.4-84

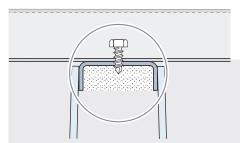
Halfen HTU Cast-in channels, steel hot-dip galvanized									
			Steel						
-			Material	Standard	Zinc coating				
The Park		Channel profiles Anchor A _N , D	1.0038	EN 10 025-2	FV: ≥ 50 µm				
		Fixing	building authority or ETA	t metal or wall-cladding elen approved self-drilling screws vith the surface of precast co	or metal deck				

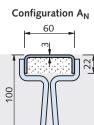
Vertical Halfen HTU Cast-in channels for fixing façade panels

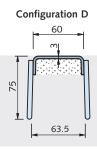
Hot-dip galvanized FV:

Dipped in a galvanising bath at a temperature of approximately 460°C. This method is used primarily for open-profile channels.

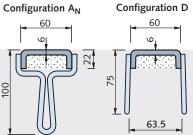
73

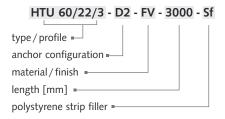

10


ACCESSORIES


HALFEN HTU CAST-IN CHANNELS

C-shaped Channels with Welded Anchors


Product range


Type HTU 60/22/6

Profile cross-section A	2.81	l cm²	4.94 cm ²		
Moment of inertia I_y / Moment of resistance w_y	1.13 cm ⁴ ,	/ 0.71 cm³	1.84 cm ⁴ ,	/ 1.27 cm³	
Profile weight including anchors	2.49 kg/m	2.50 kg/m	4.25 kg/m	4.26 kg/m	

Type HTU 60/22/3

Ordering example:

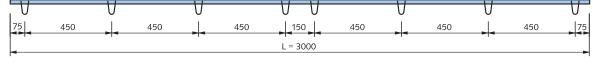
FV = Steel S235JR, hot-dip galvanized

HTU 60/22/3	Number of
= hot-dip galvanized	anchors
HTU 60/22/3 - AN2 - FV - 3000 - Sf	8
HTU 60/22/3 - D2 - FV - 3000 - Sf	8
HTU 60/22/3 - AN3 - FV - 3000 - Sf	20
HTU 60/22/3 - D3 - FV - 3000 - Sf	20

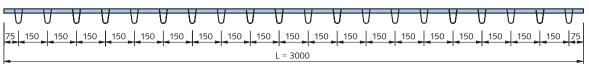
Connecting element example HTU 3 mm material steel ETA 10/0200:

Self-drilling screws 6.3x19 e.g. JT2-6-6,3-19-xE16 with sealing disc. Connecting element is exposed to weather: JT3-6-6.3x25-E16 (Wall) or JZ3-6-6.3x25-E22 (Roof)

HTU 60/22/6	Number of
= hot-dip galvanized	anchors
HTU 60/22/6 - A _N 2 - FV - 3000 - Sf	8
HTU 60/22/6 - D2 - FV - 3000 - Sf	8
HTU 60/22/6 - A _N 3 - FV - 3000 - Sf	20
HTU 60/22/6 - D3 - FV - 3000 - Sf	20


Connecting element example HTU 6 mm material steel ETA 10/0200:

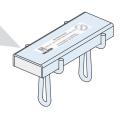
Self-drilling screws 6.3x22 e.g. JT2-6-6,3-x22-V16 with sealing disc or cartridge fired nails. Connecting element is exposed to weather:


see screw, or nail approval.

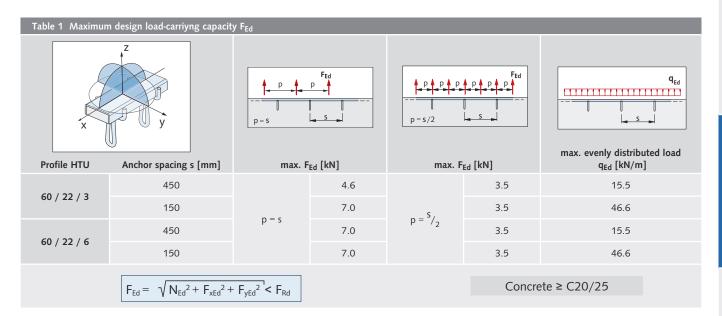
Anchor spacing:

Type D3 or A_N3

Identification HTU Dimensions in [mm]


A yellow identification label is fixed to the back of each channel.

HTU 60/22/3 Type A_N (Steel 1.0038 thickness 3 mm)


for screw-fastening of trapezoidal sheet metal with hexagonal sheet metal or self-drilling screws

HALFEN HTU CAST-IN CHANNELS

C-shaped Channels with Welded Anchors

Table 2 Minimum distance when exploiting maximum load as in table 1									
Profile		Minimum i	nteraxial spa	cing and ed	ge distance				
HTU $\left\{ egin{array}{ll} 60/22/3 \ 60/22/6 \end{array} ight.$	a a ① [mm]	a _r ② [mm]	a e ③ [mm]	a f ④ [mm]	h ⑤ [mm]	b ⑥ [mm]			
Type A _N	200	100	20	20	100 + nom c	200	a _e a _f a _f		
Type D	200	100	20	20	75 + nom c	200	min. b aa a _r		

- ① If the (trapezoidal sheet metal) channels are placed so that the anchors of adjacent channels are offset by at least 200 mm, the axial spacing a_a may be reduced to 80 mm.

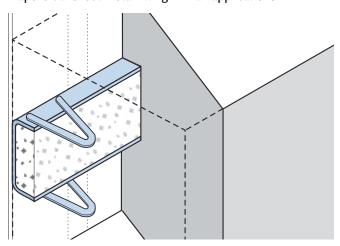
$$a_{r \text{ red.}} = \frac{\text{actual } N_{Ed}}{\text{max. } F_{Ed}} \times a_{r} \ge 50 \text{ mm}$$

 $\begin{array}{l} \textbf{actual N}_{Ed} = \textbf{design rating of actual load} \\ \textbf{max. F}_{Ed} = \textbf{maximum load as in the table above} \\ \end{array}$

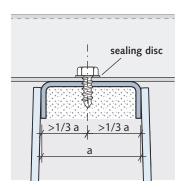
The edge distances must not be reduced if transverse stress (V_{xEd} , V_{vEd}) is present.

- 4 When fully exploiting maximum load capacity F_{Ed} , see table above, the "last anchors" of adjacent channels must be at least 150 mm apart.
- ⑤ Depends on the anchor's size and the required concrete cover.
- Minimum width of building component for a one channel layout.

10


HALFEN HTU CAST-IN CHANNELS

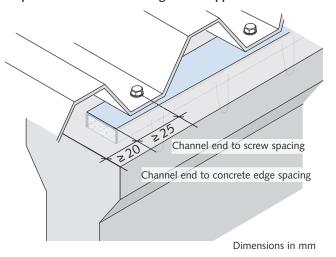
C-shaped Channels with Welded Anchors


Installation

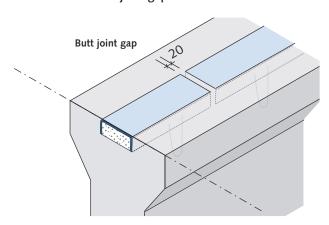
The ready-to-install HTU Channel is embedded flush with the final concrete surface. It is advisable to level the concrete surface and to apply a slight slope to the outer edge of the concrete. This is to ensure that the trapezoidal sheet metal rests only on the HTU Channel. According to German approval a heightened installation of up to 5 mm is also possible.

Trapezoidal sheet metal fixing in wall applications

Screw placement



Assembly (with self-drilling screw)


- use a power-driver to fix the self-drilling screw; a pilot hole is not required. Even 4-fold overlapping at joints is not a problem with self-drilling screws
- the recommended engine speed and socket size must be observed; See product data sheet of the self-drilling screws

Alternatively, if the trapezoidal sheet metal manufacturer requires a minimal support width larger than 60 mm, this can be achieved through a flush channel installation and a flat concrete surface. Ensure that pre-stressed concrete trusses are properly aligned, centred and absolutely plane. Maintaining a 20 mm gap between individual channel ends is recommended.

Trapezoidal sheet metal fixing in roof applications

Recommended butt joint gap between two channels

- > suitable tools for various screws can be obtained from the screw supplier
- > the trapezoidal sheet metal must be attached in the central third of the channel back; Screws must be positioned at a minimum distance of 25 mm from the channel ends

FRAMING CHANNELS

The benefits at a glance

To complement the product range we have a wide range of framing channels with accessories. We can supply everything you need for your project; everything from one source.

Halfen Framing channels, used in combination with matching Halfen Bolts (or threaded plates $^{\odot}$) have all the benefits needed for versatile bolt and frame constructions.

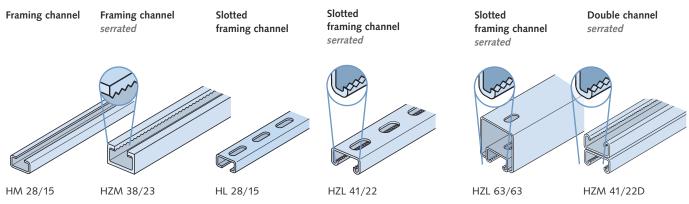
The Halfen Framing channels range includes hot and cold-rolled channel profiles with standard or serrated channel lips.

Quick and economical

- full flexibility in positioning and dimensioning of the bolt connection
- > quick installation and adjustability of plant equipment or building components
- > dirt and noise free on-site modifications
- innovative modular assembly system; numerous complementary accessories available
- > no more welding in hazardous environments
- > bolted connections do not damage the corrosion protection of plant components

Halfen Framing channels are available, mill-finished, hot-dip galvanized or in stainless steel materials; slotted or non-slotted.

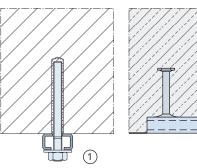
① The complete, available product range for industrial application can be found at www.halfen.com in the technical product information catalogues; MT-FBC (Flexible Bolt connections) or MT-FFC (Flexible framing connections). www.halfen.com ▶ Downloads ▶ Brochures ▶

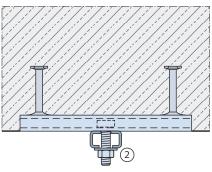

10

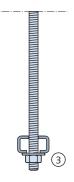
11

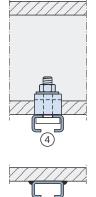
FRAMING CHANNELS

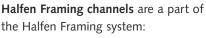
Framing Channels HM/HZM/HL/HZL - Application Examples

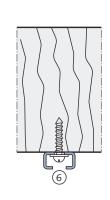

Type Overview




Application Examples


Halfen Framing channels HM/HZM and slotted Halfen Framing channels HL/HZL can be attached to a supporting structure using various methods:


- ① fastened to concrete or masonry with HB-VMU plus wedge anchors
- 2 bolted to Halfen HTA-CE and HZA Cast-in channels
- 3 connected to threaded rods
- 4 clamped to steel profile supports
- (5) welded to steel components
- ® screwed or nailed to wood structures



- > installations for plant engineering
- > technical equipment in buildings
- > heavy and light installations

Typical application of the Halfen Powerclick system

The Halfen Framing system product range can be found in the following catalogues:
Halfen Flexible bolt connections,
Halfen Flexible framing connections
Halfen Powerclick System.

FRAMING CHANNELS

Framing Channels HM/HZM/HL/HZL - Type Overview

Heavy Duty	Heavy Duty Framing System													
	Hot-ro	olled			Cold-rolled		Hot-rolled	Hot-rolled Cold-rolled			Hot-ro	Hot-rolled, serrated		
HM 72/48	HM 55/42	HM 52/34	HM 50/30	HM 49/30 ■ ■ 🗵	HM/HL 50/40	HM 486	HM 40/22	HM 40/25	HM 422	HZM 64/44	HZM 53/34	HZM 41/27	HZM 38/23	HZM 29/20
33 4 5:84 72	26 P4	52.5 \$\frac{\sigma_{\text{E}}}{22.5}	49 22.5	50 22	49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	48 22	39.5 R 7 18	40 18 52	39.5	26	22.5 52.5 \$\frac{1}{2} \frac{1}{2} 1	40 18.5	38 % 18	29 14
					- 🖫 -			—						
HS / HSR 72/48, GWP 72/48	HS 50/30	HS / 50/ GWP !	30,		HS 50/30, WP 50/30 GWP 50/40			S / HSR 40/22, VP 40/22		HZS 64/44	HZS 53/34	HZS 38/23	HZS 38/23, HS 38/17	HZS 29/20, HS 28/15

Medium Duty Framing System									
	Cold-	rolled	Cold-rolled, serrated						
HM / HL 41/83 □ □	HM / HL 41/62	HM / HL 41/41	HM / HL 41/22	HZL 63/63	HZM / HZL 41/41	HZM / HZL 41/22			
41 ₂₂	41 C ₂₂ C ₃	41 41	41 √22 ≅	63 41 22	41 47	41 N			
			— T —						
			35 /LIC 44 /44 LI35 44 /						

HZS/HS 41/41, HZS 41/22 GWP 41/41, GWP 41/22

Light Duty Fra	aming System					
		Cold-rolled			Cold-rolled	
HM 36/36, HL 36/36	HM 38/17	HM 28/28, HL 28/28	HM 28/15, HL 28/15	HM 315	HM 20/12, HL 20/12	Materials/Finish: FV Steel hot-dip galvanized or WB steel mill finished
36	38 27 27 27 27 27 27 27 27 27 27 27 27 27	28 28 %	28 <u>S</u>	30 5	20 10	 SV Steel, sendzimir galvanized A4 Stainless steel 1.4571/1.4404 A2 Stainless steel 1.4307 (on request) MCR Stainless steel 1.4547/1.4529 (on request)
						HZM/HZL serrated profiles For information on materials → see page 12–13
HS 38	•		8/15, 28/15	GWP 28/15	HS 20/12, GWP 20/12	GWP Locking plates are part of the Halfen MT-FBC Flexible bolt connections product range.

ROOF AND WALLS

The right solution for each application

The efficient and established installation systems for timber roof structures, masonry restraints and connectors for concrete façades are proven practical solutions for the construction industry, greatly improving construction time with significant cost-saving.

Suitable for horizontal forces acting on rafter and collar beam roofs.

Suitable for all acting loads e.g. wind loads in roof structures.

For connection of tension and compression loads from concrete walls elements.

For connection of brickwork to concrete walls and columns or steel elements.

Suitable for horizontal loads in concrete wall elements (loads perpendicular to the bracket).

Wall and column corner protector; application in industry and multi-storey car parks.

ROOF AND WALLS Application Examples

Halfen HSF Rafter shoe 6/12

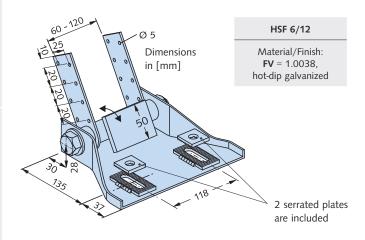
Halfen HKZ Restraint tie with serrated washer

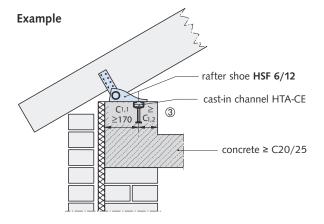
Airbus paintshop with Halfen HVL Restraint tie

HVL-System in precast building components

Connecting construction timbers to concrete using Halfen HNA

Timber roof construction with Halfen HNA Fixing straps




Corner guards in an industrial environment

Halfen ML Brick-tie anchor system

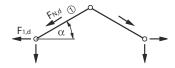
ROOF AND WALLSHalfen HSF Rafter Shoe

Definition $c_{1,1}$ and $c_{1,2}$ see page 27

Design values F _{Rd}								
Load F _{Rd}	d F _{Rd} Required Halfen Cast-in channel Min. edge distance ②		Required Halfen Bolt					
[kN/Rafter]	Туре	C _{1/2} [mm]	Type dimensions					
12.6	HTA-CE 38/17	75	HS 38/17 - M16 × 40					
16.8	HTA-CE 40/22 P HTA-CE 40/25	100	HS 40/22 - M16 × 50					
19.6	HTA-CE 50/30 P HTA-CE 49/30	150	HS 50/30 - M16 × 50					

In modern wood constructions, HSF 6/12 rafter shoes are used to support the horizontal forces in rafter and collar tie roofs.

The advantages at a glance:

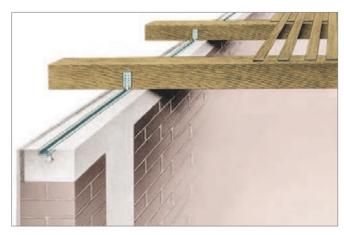

- minimal planning; simply specify the profile and position of the Halfen Cast-in channels in the concrete element
- > clearly defined statics with flexible rafter shoes
- complex and therefore costly support structures are not necessary
- > simple and straightforward roof construction:
 - a) adjustable support plate
 - b) adjustable nailing brackets for vertical anchorage for various rafter widths from 60 to 120 m
 - c) adjustable in longitudinal rafter axis \pm 15 mm
- freely adjustable rafter spacings in the longitudinal axis of the Halfen Channel without additional measures
- > hot-dip galvanized for excellent corrosion protection

The horizontal forces are transferred into the main concrete structure using (ETA) European Technical approved Halfen HTA-CE Cast-in channels.

During assembly ensure that the serration in the counter plates engages in the base plate. The marking on the counter plates must be at right angles to the slot in the base plate.

Rafter roof static system:

 $F_{1,d} < F_{Rd}$



- ① The maximum rafter strength is limited by the design load of each individual component in the rafter shoe. Load tests resulted in a mean breaking load of 50kN. With normal loads larger than the recommended load capacity (= about 1/3 of the breaking load), the rafter spacing will need to be reduced.
- $\@$ If lower loads are present, then the minimum edge distance $C_{1,2}$ for the Halfen Cast-in channels can be reduced. The distance to the concrete edge must be at least 170 mm.
- ③ Make sure that the Halfen Cast-in channels are installed flush with the concrete surface. Use spacers if necessary.

11

ROOF AND WALLS

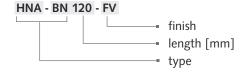
Halfen HNA Timber Fixing Strap

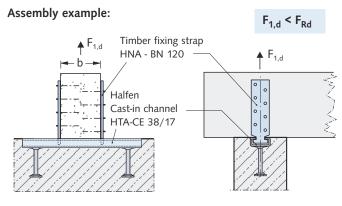
Typical installation of timber beams using HNA nailing straps with Halfen Cast-in channels embedded in concrete.

Halfen HTA-CE Cast-in channels or Halfen HTA-CE Cast-in channel short elements are cast in the concrete; suitable for concrete ring beams or slabs. The type of Halfen HTA-CE Cast-in channels, nailing straps and nails depend on the assumed loads (ex. wind force).

To provide an optimal base for roof framework, continuous

For calculation and design criteria see:


- EN 1991-1-4 (EC1) and EN 1991-1-4/NA
- EN 1995-1-1 (EC5)


The timber fixing straps can be positioned on one or both sides of the timber beams or rafters. Refer to the following table for F_{Rd} load capacities. The beams/framework must be secured against twisting when straps are used only on one side of the beams, (example by nailing to the upper wood roof boarding).

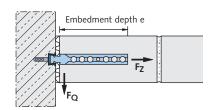
Type selection Dimensions in [mm] WN 120 WN 185 BN 185 N 95 BN 120 BN 95 BN 120 BN 95 BN 120 A 355 A 3

Halfen Bolt M10 with nut, please order separately!

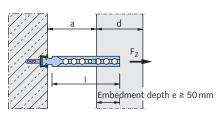
Ordering example:

Type selection, timber fixing straps									
Suitable for	Material/Finish FV = 1.0038, hot-dip galvanized		lue for load capacity each beam attachm		r fixing straps to ams/rafters				
Halfen		Positi	on of timber fixing	straps					
Cast-in channel:	Item name: Length [mm]	Single-sided	Double	e-sided	Wire nails	Anchor nails			
	[]		for b ≥ 60 mm	b ≥ 100 mm					
	HNA - N 95 - FV	4.2	4.9	5.6	according to EN 10230-1	according to the manufacturer's technical approval			
HTA-CE 28/15	HNA - N 120 - FV	4.2							
hot-dip galvanized (FV)	HNA - WN 120 - FV	1.4	2.8	2.8					
	HNA - WN 185 - FV	1.4							
	HNA - BN 95 - FV								
HTA-CE 38/17	HNA - BN 120 - FV	6.3	7.5	8.4					
hot-dip galvanized (FV)	HNA - BN 185 - FV								
	HNA - WN 120 - FV	1.4	2.8	2.0					
	HNA - WN 185 - FV	1.4	2.8	2.8					

ACCESSORIES

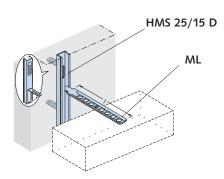

ROOF AND WALLS

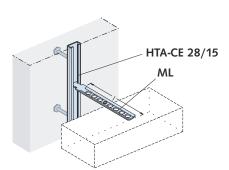
Brick Tie Anchor Systems ML + BL

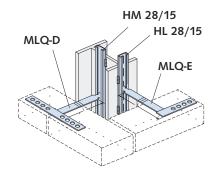

Halfen Brick tie systems are economic and proved fixing systems using Halfen ML Brick ties for fixing brickwork, in-fill panels, partition walls, cladding panels (with or without air gap or thermal insulation) to steel or timber structures or concrete walls and columns. The brick ties are able to move vertically in the wall connector channels; this greatly reduces movement cracks in the brickwork.

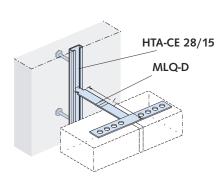
All HTA-CE and HMS profiles have a foam filling to prevent concrete ingress. The channels are attached to the formwork using standard nails.

Wall connection

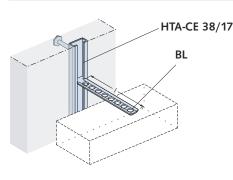

Facing brickwork connection

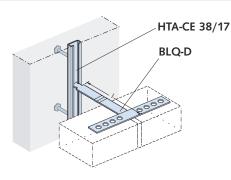

The Halfen Brick tie anchors are inserted at the recommended intervals (static requirements) in the brick wall during construction. The anchors are inserted in the brick tie channels, turned 90°, laid flat between the rows of brick and pressed into the mortar. The perforations in the anchors optimise anchorage with the mortar.

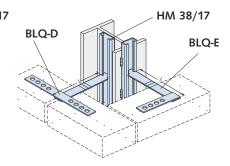

ML Brick ties in combination with Halfen Channels HMS, HTA, HM and HL



The pre-punched anchors in the HMS Channels are bent out by hand every 250 mm on-site to ensure safe anchorage in the concrete.

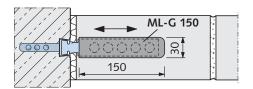



HM 28/15 welded to steel column. HL 28/15 can be alternatively bolted with dowels to concrete.



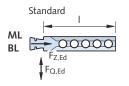
BL Brick tie in combination with Halfen Channel type HTA 38/17 and HM 38/17

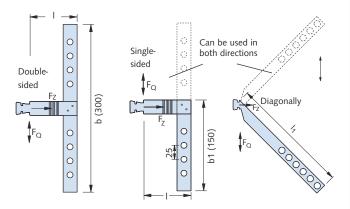
ROOF AND WALLS


Brick Tie Anchor Systems ML + BL

Allowable wall spacing a										
Connection two-leaf masonry	Length I (I_1) [mm]	Spacing a [mm]	d [mm]							
7/7/1 a I d	85	20 - 45								
e 50 mm	120	40 - 80	115							
	180	85 - 140								
	(300)	0 - 80								
	(350)	20 - 95	240							
	(400)	35 - 115								

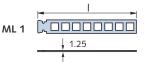
Halfen Brickwork anchors are verified in accordance with EN845-1 for various anchor channels with a minimum embedment depth of 50mm:

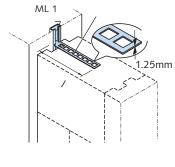

Characteristic load-bearing capacity (validated preformance)									
		BL	ML	ML1					
F _Z [KN] Axial load	HTA-CE	3.2	2.7	2.5					
	HMS		1.6	1.6					
F _Q [KN] Shear load	HTA/HMS	2.7	1.5	1.4					
F _D [KN] Compression load	HTA/HMS	1.0 (BL180)	1.0 (ML180)	-					


Sliding sleeve ML-G 150 for ML-Anchor, for wall connections

Allows movement in the anchor longitudinal direction; this helps to avoid cracking in long sections of brick wall or infill brickwork connected to concrete structures.

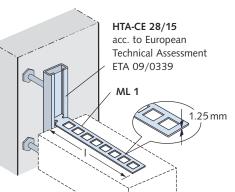
Material: Soft-PVC Article name: MLG-150

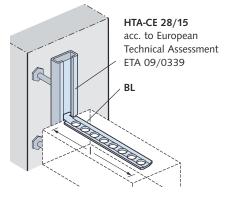




Brick ties ML 1 for connections with thin-joint mortar in interior applications

Material: Stainless steel W1.4301 A2


Brick ties stainless steel			
Article name	Length I [mm]		
ML1-125-A2	125		
ML1-125-A2	185		
ML1-125-A2	245		



Channels load-bearing capacity with wall tie spacing of ≥ 25 cm					
Brick tie channel	HMS 25/15 D	HTA-CE 28/15	HTA-CE 38/17		
Centric tension F_{Z} [kN] $(F_{Z,Rd})$	1.2 (1.6)	3.0 (4.0)	4.5 (6.1)		
Transverse stress F_Q [kN] ($F_{Q,Rd}$)	1.5 (2.0)	3.0 (4.0)	4.5 (6.1)		

ML 1 Masonry connection

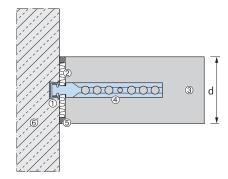
BL Masonry connection

ML/BL Masonry connection

ROOF AND WALLS

Brick Tie Anchor Systems ML + BL

Brick-tie channel				Brick-tie anchor		
75	HMS 25/15 D L = 2500 mm	ML Standard ⇒ 26 × 2 [mm]	ML1 □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	MLQ - D Double-sided 25 × 3 [mm]	MLQ - E One-sided 25 × 3 [mm]	MLS Diagonal 22 × 3 [mm]
8/15	HTA-CE 28/15 L = 1050 mm ^① L = 6070 mm ^①	Type Length I [mm]	Type Length I [mm]	Type Length I [mm]	Type Length I [mm]	Type Length I ₁ [mm]
48,		ML - 85	ML 1 - 125	MLQ-D - 85	MLQ-E - 85	MLS - 300
15	HL 28/15 L = 6070 mm ^①	ML - 120	ML 1 - 185	MLQ-D - 120	MLQ-E - 120	MLS - 350
		ML - 180	ML 1 - 245	MLQ-D - 180	MLQ-E - 180	MLS - 400
17	HTA-CE 38/17 L = 1050 mm ^① L = 6070 mm ^①	Standard 30 × 2 [mm] Type Length I [mm]	BLQ - D Double-sided 30 × 3 [mm] Type Length I [mm]	m]		JR, vanised ID + Z275, galvanised teel
50 (74)		BL - 85	BLQ-D - 85	BLQ-E - 85	1.4571/1.4 N A2 = Stainless sta	
		BL - 120	BLQ-D - 120	BLQ-E - 120	- 72 Stanfiess 30	. 1301
		BL - 180	BLQ-D - 180	BLQ-E - 180	① Other lengths: Availa	able on request


Firewall connection according to DIN 4102-4:2016-05

Solid masonry fire walls

Statically required connections of load bearing, room-enclosing, masonry walls can also be designed as fire walls in accordance DIN 4102-4 section 9.8.4 using Halfen Brick tie channels. The anchorage to adjacent components (steel reinforced concrete supports or walls) meet the requirements for stability and fire resistance if the anchorage conforms to the standards set in DIN 4102-4 section 9.8.4 (figure 9.13, variant 2).

Anchor spacings

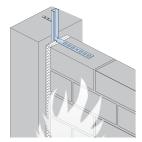
Halfen Brick tie anchors can be used at any position along the whole length of the brick tie channel. Generally the standard spacing between the anchors is 250 mm (4 anchors per metre).

Definition, DIN regulations

- ① Halfen Cast-in channel
- ② Insulation layer:

According to DIN 4102-4 section 9.2.14 insulation layers in connecting joint gaps must, "[...] be made of non-flammable mineral fibre; have a melting point ≥ 1000°C as stated in DIN 4102-17; and have a gross density of ≥ 30 kg/m³" and must not smoulder.

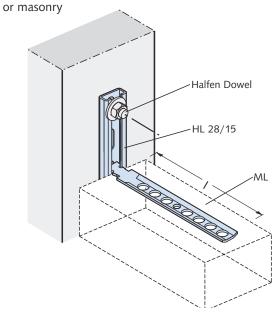
③ Masonry:

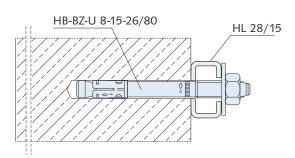

Bricks (gross density class) and minimum wall thickness according to DIN EN 1996-1-2: 2011-04.

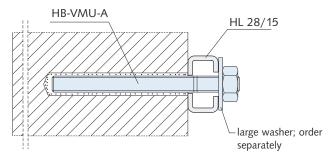
- Masonry connection (vertically adjustable)
- **5** Expansion joint
- **©** Concrete

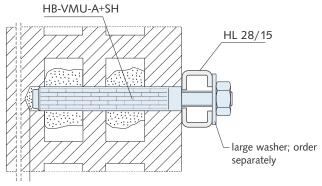
Product information

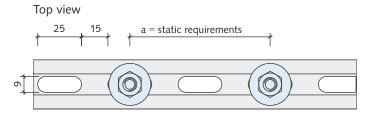
Halfen Cast-in	④ Brick tie anchor				
channel Type ①	for standard grout	for thin mortar			
HMS 25/15 D	ML	ML 1			
HTA 28/15	ML	ML 1			
HTA 38/17	BL	-			


Connection of a load bearing masonry wall as a firewall according to DIN 4102-4 section 9.8.4 (figure 9.13) or according to DIN EN 1996-1-2: 2011-04 (figure E.4B)




ROOF AND WALLS


Halfen Anchor Bolt Systems


HL slotted framing channels anchored to concrete

ETA 17/0196 (brickwork) and ETA 16/0691 (concrete)/ Injection system HB-VMU plus

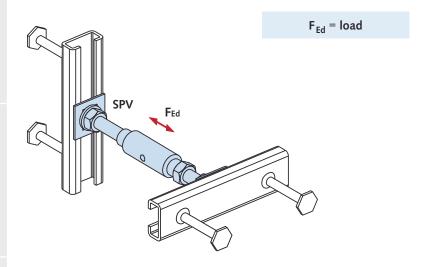
For more information on application and assembly see the Technical Product Information catalogue, **Halfen HB Anchor bolt systems**

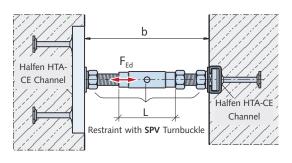
Bolt anchor HB-BZ-U 8-15-26/80

- > galvanized or (A4) stainless steel
- > approved for cracked and non-cracked concrete
- > with large washer DIN 9021/EN ISO 7093

Anchor rod HB -VMU-A 8-20/110

- > galvanized or (A4) stainless steel
- > approved for monolithic masonry
- with large washer DIN 9021/EN ISO 7093 (order separately)
- mortar cartridge HB-VMU plus 280 and static mixer (order separately)


Anchor rod HB-VMU-A 8-20/110 with Perforated sleeve HB-VMU-SH 16×85


- > galvanized or (A4) stainless steel
- > approved for perforated brick masonry
- with large washer DIN 9021/EN ISO 7093 (order separately)
- > mortar cartridge HB-VMU plus 280 and static mixer (order separately)

ACCESSORIES

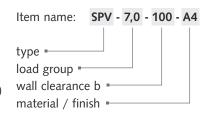
ROOF AND WALLS

Restraint with Turnbuckle SPV

Ensure adequate screw depth:

 $M12 \rightarrow \geq 10 \text{ mm}$ $M16 \rightarrow \geq 13 \text{ mm}$

Product description


The restraint with turnbuckle SPV is suitable for compressive and tensile loads up to $F_{Ed} = 15.0\,\mathrm{kN}$ and for clearances up to 200 mm. By turning the clamping sleeve (sleeve has a right and left-hand thread), the clearance can be freely adjusted within the given range. Connected to the building structure using Halfen Cast-in channels (order separately).

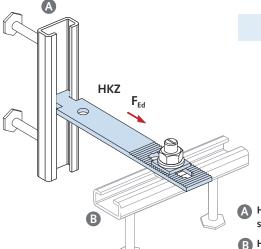
Included in delivery

- Turnbuckle SPH
- 2 HALFEN Bolts (1 right-hand thread, 1 left-hand thread)
- 3 standard nuts
- 2 washers and 2 SIC locking washers

Ordering example:

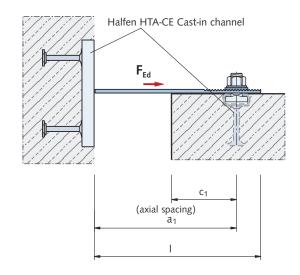
Halfen Cast-in channels must be ordered separately

Halfen S	SPV Restraint with	turnbuckle								
Load gro	Load group 5.0 7.0				10.0					
Load cap	acity F _{Rd} [kN]		±7.5			±10.0			±15.0	
Type	Stand-off distance	Halfen Bolt left- hand thread	Sleeve	Halfen Bolt right-hand thread	Halfen Bolt left-hand thread	Sleeve	Halfen Bolt right-hand thread	Halfen Bolt left-hand thread	Sleeve	Halfen Bolt right-hand thread
.) [-	b	M12	L	M12	M16	L	M16	M16	L	M16
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
	100 ±10 ②	50	60	40	50	60	40	-	-	-
	120 ±15	50	75	40	50	75	40	-	-	-
SPV	140 ±15	50	75	60	50	75	60	80	60	50
3PV	160 ±15	50	95	60	50	95	60	80	75	50
	180 ±15	50	115	60	50	115	60	80	95	50
	200 ±15	50	135	60	50	135	60	80	115	50
Recom	nmended fixing	HTA	A-CE 38/1	7 ①	HTA	A-CE 38/1	7 ①	HTA	A-CE 49/30	0 ①


① Short elements 150, 200 and 250. The respective boundary conditions must be taken into consideration when verifying the anchorage. ② Minimum tolerance is limited for load group 7.0

For further concrete façades accessories see catalogue Halfen Concrete façade anchor systems www.halfen.com ▶ Downloads ▶ Brochures ▶ ...

ROOF AND WALLS


Restraint Tie HKZ

F_{Ed} = load

Halfen Channel suitable for HKZ-Restraint ties

B Halfen Channel or dowel according to approval

Product characteristics

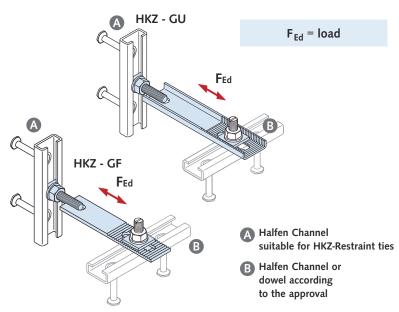
The serrations in the bracket and in the washer ensure positive static load transmission.

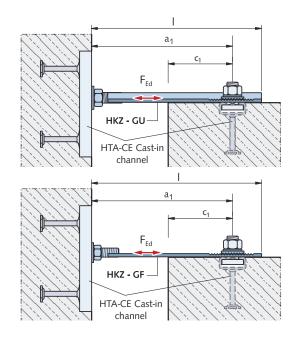
Please order HALFEN Cast-in channels and HALFEN Bolts and washers separately

Two Halfen Cast-in channels embedded at right angle in the concrete ensure three-dimensional adjustability.

Ordering example:

type = clearance a₁ = material / finish = 100 - A4


Halfen HKZ Rest	raint tie					
Characteristics:	Type selection: GV = galvanized. Not suitable for façades with	Type selection: A4 = Stainless steel grade 1.4571/1.4404		Dime	nsions	
Load	ventilation gaps	_	Length	Spacing	Tolerance	Holes
capacity F_{Rd}	Type a ₁	Type a ₁	1	a ₁		
[kN]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
	HKZ 28/15 - 50 - GV	HKZ 28/15 - 50 - A4	90	50		LL 11 × 55
	HKZ 28/15 - 75 - GV	HKZ 28/15 - 75 - A4	115	75		LL 11 × 55
	HKZ 28/15 - 100 - GV	HKZ 28/15 - 100 - A4	140	100		
	HKZ 28/15 - 125 - GV	HKZ 28/15 - 125 - A4	165	125		
+4.9 (tension only)	HKZ 28/15 - 150 - GV	HKZ 28/15 - 150 - A4	190	150	a ₁ ±20	LL 11 × 55
(tension only)	HKZ 28/15 - 175 - GV	HKZ 28/15 - 175 - A4	215	175		
	HKZ 28/15 - 200 - GV	HKZ 28/15 - 200 - A4	240	200		RL 11
	HKZ 28/15 - 225 - GV	HKZ 28/15 - 225 - A4	265	225		
	HKZ 28/15 - 250 - GV	HKZ 28/15 - 250 - A4	290	250		
	HKZ 38/17 - 75 - GV	HKZ 38/17 - 75 - A4	115	75		LL 13 × 55
	HKZ 38/17 - 100 - GV	HKZ 38/17 - 100 - A4	140	100		
	HKZ 38/17 - 125 - GV	HKZ 38/17 - 125 - A4	165	125		
	HKZ 38/17 - 150 - GV	HKZ 38/17 - 150 - A4	190	150		
+9.8	HKZ 38/17 - 175 - GV	HKZ 38/17 - 175 - A4	215	175	a ₁	LL 13 × 55
(tension only)	HKZ 38/17 - 200 - GV	HKZ 38/17 - 200 - A4	240	200	±20	
	HKZ 38/17 - 225 - GV	HKZ 38/17 - 225 - A4	265	225		RL 13
	HKZ 38/17 - 250 - GV	HKZ 38/17 - 250 - A4	290	250		
	HKZ 38/17 - 275 - GV	HKZ 38/17 - 275 - A4	315	275		
	HKZ 38/17 - 300 - GV	HKZ 38/17 - 300 - A4	340	300		


① The load capacities apply for the HKZ-restraint ties. The channel 🔕 and the fixing dowel/channel ③ must be verified, depending on the edge distance c₁, the concrete grade and the reinforcement, for each application.

ACCESSORIES

ROOF AND WALLS

Restraint Tie HKZ - GF/GU

Product description

The serrations in the bracket and in the washer ensure positive static load transmission.

Please order Halfen Cast-in channels and Halfen Bolts and washers separately.

The double-sided attachment using a Halfen Bolt and a threaded plate ensures positive and slippage-free wind anchoring when used in combination with Halfen HTA-CE Cast-in channels set in concrete; the connection is three-dimensionally adjustable.

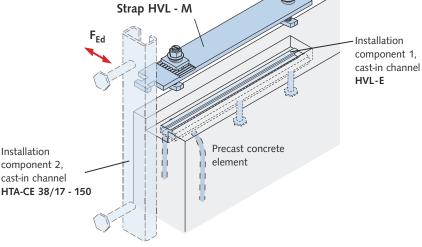
Ordering example:

Halfen Restraint ties, type HKZ-GF and type HKZ-GU							
Characteristics:	Type selection: GV = galvanized not suitable for façades	Type selection: A4 = Stainless steel 1.4571/1.4404		Dimensions:			
Load capacity F _{Rd}	with ventilation gap Type a 1	Туре	a ₁	Length I	Spacing a ₁	Tolerance	Slot
[kN]	[mm]		[mm]	[mm]	[mm]	[mm]	[mm]
	HKZ - GF 28/15 - 75 - GV	HKZ - GF 28/15	5 - 75 - A4	115	75		
	HKZ - GF 28/15 - 100 - GV	HKZ - GF 28/15	- 100 - A4	140	100		
±4.9	HKZ - GF 28/15 - 125 - GV	HKZ - GF 28/15	- 125 - A4	165	125	a ₁ ±20	11 × 55
	HKZ - GF 28/15 - 150 - GV	HKZ - GF 28/15	- 150 - A4	190	150		
	HKZ - GF 28/15 - 175 - GV	HKZ - GF 28/15	- 175 - A4	215	175		
	HKZ - GF 38/17 - 100 - GV	HKZ - GF 38/17	- 100 - A4	140	100	a ₁ ±20	13 × 55
	HKZ - GF 38/17 - 125 - GV	HKZ - GF 38/17	- 125 - A4	165	125		
	HKZ - GF 38/17 - 150 - GV	HKZ - GF 38/17	- 150 - A4	190	150		
±9.8	HKZ - GF 38/17 - 175 - GV	HKZ - GF 38/17	- 175 - A4	215	175		
	HKZ - GU 38/17 - 200 - GV	HKZ - GU 38/17	- 200 - A4	240	200		
	HKZ - GU 38/17 - 225 - GV	HKZ - GU 38/17	- 225 - A4	265	225	a ₁ ±20	13 × 55
	HKZ - GU 38/17 - 250 - GV	HKZ - GU 38/17	- 250 - A4	290	250	-20	
	HKZ - GU 50/30 - 200 - GV	HKZ - GU 50/30	- 200 - A4	240	200		
	HKZ - GU 50/30 - 225 - GV	HKZ - GU 50/30	- 225 - A4	265	225		
±16.8	HKZ - GU 50/30 - 250 - GV	HKZ - GU 50/30	- 250 - A4	290	250	a ₁ ±20	17 × 60
	HKZ - GU 50/30 - 275 - GV	HKZ - GU 50/30	- 275 - A4	315	275	-20	
	HKZ - GU 50/30 - 300 - GV	HKZ - GU 50/30	- 300 - A4	340	300		

1 The load capacities apply for the HKZ-restraint ties. The channel 3 and the fixing dowel/channel 3 must be verified, depending on the edge distance c_1 , the concrete grade and the reinforcement, for each application.

ROOF AND WALLS

HVL Precast Connection


Assembly:

The connecting strap is delivered ready to be installed: The bolt fastening sets and the counter plate are pre-assembled for fast installation.

Pre-assembled

components

Assembly part

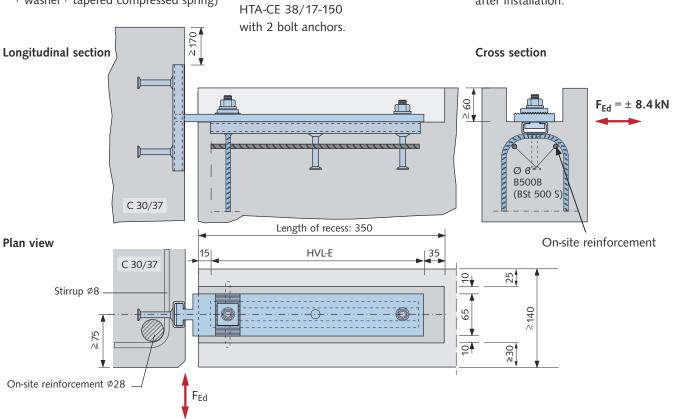
Assembly part HVL-M

Pre-assembled, consisting of:

- serrated hammer-head strap
- 1 serrated counter plate
- 2 bolt sets (Bolt HS 38/17 - M12 × 50
 - + washer+ tapered compressed spring)

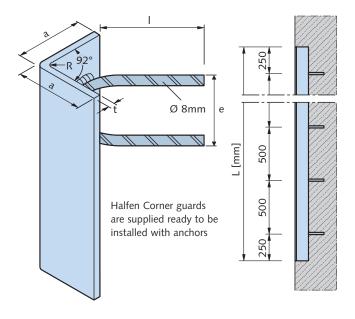
Installation component 1 HVL-E:

Halfen Cast-in channel HTA 38/17-300-SK with 2 bolt anchors and one loop end anchor.

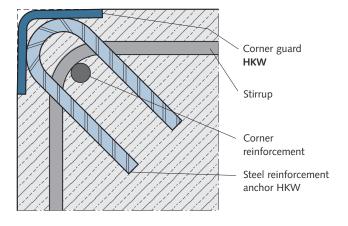

Installation component 2:

Halfen Cast-in channel HTA-CE 38/17-150

Corrosion protection


- hammer-head strap, cast-in channel: hot-dip galvanized
- · Halfen Bolts, nuts, washers and springs: galvanized

These parts are covered by mortar after installation.



ROOF AND WALLS

Halfen HKW Corner Guard

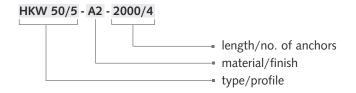
Column edge, typical cross-section

Corner guard HKW					
Type se	election:	Materia	l/Finish:	Anchor dimensions	Radius
		FV = hot-dip galvanized	A2 = Stainless steel		
Type a/t [mm]	Length no. of L anchors [mm]	-		l × e [mm]	R [mm]
HKW 50/5 -	500 / 2	FV	A2		
	750 / 2	FV	A2	75 × 55	6
	1000 / 2	FV	A2		
	1500 / 3	FV	A2		
	2000 / 4	FV	A2		
HKW 80/6-	500 / 2	FV	A2		
	750 / 2	FV	A2		
	1000 / 2	FV	A2	100 × 85	8
	1500 / 3	FV	A2		
	2000 / 4	FV	A2		
HKW 100/8 -	500 / 2	FV	A2		
	750 / 2	FV	A2		
	1000 / 2	FV	A2	110 × 85	16
	1500 / 3	FV	A2		
	2000 / 4	FV	A2		

Material/Finish:

■ **FV** = **Corner profile:** Steel hot-dip galvanized 1.0038

Anchor: B500B (BSt 500 S)


N A2 = Corner profile: Stainless steel 1.4307

Anchor: B500B/A NR

Advantages:

- > 92° angle ensures a tight fit to the formwork. This prevents concrete seeping between the formwork and the corner profile, resulting in a smoother finish
- > U-shaped concrete reinforced anchors do not restrict the corner reinforcement and allow easy installation of the reinforcement
- anchors are of reinforcement steel quality to guarantee optimal anchorage
- > competitive pricing through serial production

Ordering example:

93

ACCESSORIES

The benefits at a glance

You can design nearly all connections in buildings and industrial plants with Halfen Channels. With Cast-in channels or framing channels, Halfen Bolts and with our wide range of accessories we provide fastenings for all purposes.

Application example with Halfen KLP Rail clips

Fast and cost-effective

- 3-dimensional adjustable connection when used with cast-in channels
- > uses bolts instead of welding
- > simple assembly reduces installation time

Connect nearly everything with a VBM Coupler sleeve

Nuts and Washers

MU Hexagonal nuts EN ISO 4032/ **DIN 934**

GV galvanized FK 8 thread	A4 stainless steel Bolt	S/m DIN [mm]	S/m ISO [mm]
M6	M6	10/5	10/5.2
M8	M8	13/6.5	13/6.8
M10	M10	17/8	16/ 8.4
M12	M12	19/10	18/10.8
M16	M16	24/13	24/14.8
M20	M20	30/16	30/18
M24	-	36/19	36/21.5
FV hot-dip galvanized thread	A2 stainless steel Bolt	S/m DIN [mm]	S/m ISO [mm]
M6	-	10/5	10/5.2
M8	M8	13/6.5	13/6.8
M10	M10	17/8	16/8.4
M12	M12	19/10	18/10.8
M16	M16	24/13	24/14.8

VUS Square washers
VUS 40/25 for profile 40/25; HZA

1 V	Α-Τ	a ^ b ^ u
Hot-dip galvanized Bolt size	Stainless steel Bolt size	[mm]
M10	M10	40 × 40 × 5
M12	M12	40 × 40 × 5
M16	M16	40 × 40 × 5

M10

M12

M16

M20

M16

37 × 37 × 5

37 × 37 × 5

37 × 37 × 5

 $37\times37\times5$

50 × 50 × 6

VUS 49/	30	
for profil 54/33,	le 🦳	
49/30		b d

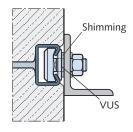
VUS 52/34
for profile
52/34,
50/30
a b

d	M20	M20	50 × 50 × 6
a b			
VUS 72/49	M20	M20	54 × 54 × 6
for profile 72/48, 72/49	M24	M24	54 × 54 × 6
	M27	M27	54 × 54 × 6
a b	M30	M30	54 × 54 × 6
VUS 41/41	M6	M6	40 × 40 × 6
for all 41/	M10	M10	40 × 40 × 6
profiles od	M12	M12	40 × 40 × 6

M10

M12

M16


M20

M16

Ordering example: VUS 52/34 - FV - M20

Application VUS:

for shimming non-flush installation of Halfen Anchor channels or for stand-off installations → see page 40.

US
Washers
DIN EN
ISO 7093/
DIN 9021;
DIN EN ISO
7094

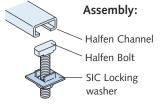
	_
d D	

DIN/	GV galvanized,	A4 stainless steel	D	d	S
ISO	bolt	bolt	[mm]	[mm]	[mm]
7094	M6	-	22	6.6	2
9021	M8	M8	24	8.4	2
9021	M10	M10	30	10.5	2.5
7094	M12	-	45	13.5	4
9021	M12	M12	37	13	3
9021	M16	M16	50	17	3
7094	M20	-	72	22	6
	FV		D	d	S
	hot-dip galv. bolt		[mm]	[mm]	[mm]
9021	M10	-	30	10.5	2.5
9021	M12	-	37	13	3
9021	M16	-	50	17	3

Ordering example: US - M12 - GV - DIN 9021

US Washers DIN EN ISO 7089/ DIN 125

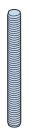
Ordering example. 03-11112-01-0111 3021					
GV	A4	D	d	S	
galvanized bolt	Stainless steel bolt	[mm]	[mm]	[mm]	
M6	M6	12	6.4	1.6	
M8	M8	16	8.4	1.6	
M10	M10	21	10.5	2	
M12	M12	24	13	2.5	
M16	M16	30	17	3	
M20	M20	37	21	3	
M24	-	44	25	4	
FV	A2	D	d	S	
Hot-dip galvanized	Stainless steel bolt	[mm]	[mm]	[mm]	
-	M8	17	8.4	1.6	
M10	M10	21	10.5	2	
M12	M12	24	13	2.5	
M16	M16	30	17	3	
M20	-	37	21	3	
M27	_	50	28	4	


Ordering example: US - M12 - GV - DIN 125

SIC
Locking
washer

GV	A4		able for en bolts
galvanized	Stainless steel A4	Type	Dimensions
SIC - 50/30 - GV	SIC - 50/30 - A4	50/30	M16, M20
SIC - 40/22 - GV	SIC - 40/22 - A4	38/17 40/22	M16
SIC - 38/23 - GV	-	38/23	M16
SIC - 29/20 - GV	-	29/20	M12
SIC - 38/17 - GV	SIC - 38/17 - A4	38/17 40/22	M12, M10
SIC - 28/15 - GV	SIC - 28/15 - A4	28/15	M8, M10
SIC - 20/12 - GV	SIC - 20/12 - A4	20/12	M8

Ordering example: SIC - 38/17 - GV



Application SIC: to secure and prevent Halfen Bolts back-turning during assembly.

Threaded rods, Hexagonal head bolts, Coupler sleeves, Ring nuts

GWS

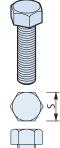
Threaded rods DIN 976-1

GV	A4	Length	F_{Rd}	allow. F
Galvanized F.k. 4.6	Stainless steel A4		1	
Thread	Thread	[mm]	[kN]	[kN]
M6	M6	1000	3.1	2.2
M8	M8	1000	5.6	4.0
M10	M10	1000	9.0	6.4
M12	M12	1000	13.0	9.3
M16	M16	1000	24.2	17.3
M20	M20	1000	37.8	27.0
M24	-	1000	54.3	38.8

Ordering example: GWS - M12 × 1000 - GV

VBM

Coupler sleeves, round



GV	A4	D	L	F_{Rd}	allow. F
Galvanized	Stainless steel			1	
Thread	Thread	[mm]	[mm]	[kN]	[kN]
M6	M6	10/10	15	3.1	2.2
M8	M8	12/14	20	5.6	4.0
M10	M10	13/16	25	9.0	6.4
M12	M12	16/20	30	13.0	9.3
M16	M16	21/25	40	24.2	17.3
M20	M20	26/32	50	37.8	27.0

Ordering example: VBM - A4 - M16

HSK

Hexagonal head bolts EN ISO 4017/ DIN 933 (without nut)

Hex bolts are used in combination with Halfen Locking plates

GV 8.8	A4	S	S
Galvanized	Stainless steel	DIN	EN ISO
FK 8.8 Dimensions	Dimensions	[mm]	[mm]
M 6 × 12	_		
M6 × 25	-	10	10
M8 × 25	M8 × 25	13	13
M8 × 40	-	13	15
M10 × 20	-		
M 10 × 30	M10 × 30		
M10 × 45	M10 × 45	17	16
M 10 × 60	-		
M 10 × 70	-		
M12 × 22	-		
M 12 × 25	M12 × 25		
M12 × 30	M12 × 30		
M12 × 40	M12 × 40	19	18
M 12 × 50	-		
M 12 × 60	M12 × 60		
M12 × 80	M12 × 80		
M12 × 90	-		
M16 × 40	M16 × 40		
M 16 × 60	M16 × 60	24	24
M16 × 90	M16 × 90		

SKM Hexagonal coupler sleeves

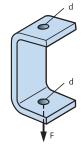
FV	A4	S	L	F_{Rd}	allow. F
Hot-dip galvanized Thread	Stainless steel Thread	[mm]	[mm]	① [kN]	[kN]
M10	M10	17	40	9.0	6.4
M12	M12	19	40	13.0	9.3
M16	M16	24	50	24.2	17.3

Ordering example: SKM - FV - M12

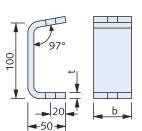
SPH

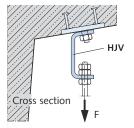
Turnbuckles with rightand left-hand thread

f = min. screw depth M12


10mm M16

13 mm


A4	D	D
Stainless steel Thread M16 × Length L [mm]	For M12 [mm]	For M16 [mm]
M 16 × 60	16	22
M16 × 75	16	22
M 16 × 95	16	22
M 16 × 115	16	22
M 16 × 135	16	22
allow. $F = 10 \text{ kN}$ $F_{Rd} = 14 \text{ kN}$		
	Stainless steel Thread M16 × Length L [mm] M16 × 60 M16 × 75 M16 × 95 M16 × 115 M16 × 135 allow. F = 10 kN	Stainless steel Thread M16 × Length L [mm] [mm] M16 × 60 16 M16 × 75 16 M16 × 95 16 M16 × 115 16 M16 × 135 16 allow. F = 10 kN


Ordering example: SPH - A4 - M12 x 75

HJV Adjustment coupler

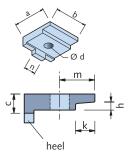
FV	A4	t	b	d	max. F _{Ed}	allow. F
Hot-dip galvanized Type	Stainless steel Type	[mm]	[mm]	[mm]	② [kN]	[kN]
1	1	6	40	13	2.1	1.5
2	2	8	50	17	4.6	3.3
3	3	10	50	17	7.0	5

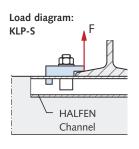
RM Ring nut DIN 582 from 2010-09

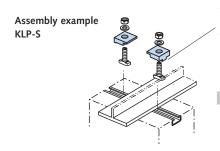
GV	d	F _{Rd}	allow. F
C 15E, galvanized Thread	[mm]	① [kN]	[kN]
M8	20	2.0	1.4
M10	25	3.2	2.3
M12	30	4.8	3.4
M16	35	9.8	7.0
M20	40	16.8	12.0

Ordering example: RM - GV - M12

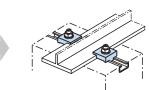
- Recommended design value of the load capacity with a centric tensile stress
- 2 Recommended design value of the load


Rail Clips

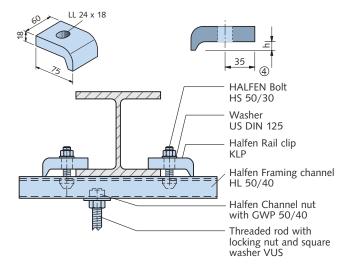

KLP-S Rail clips, steel 1.0038 forged

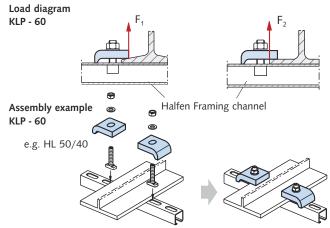

FV	Heel width	Dimensions							Allowable load		Preferred for use with		
hot-dip galvanized	n n	for Halfen Bolts	[mm]							at σ allowable = 125 N/mm ²	Standard profile I	other beam, flange thickness channels	channels
Туре	[mm]	$\emptyset \times I [mm]$	a	b	С	Ød	h	k	m	F [kN]		t [mm]	
No. 10	16	M16 × 60	44.0	45	12	18	5	12.0	22.0	3.5	80 - 140	4-6	S24
No. 26	without heel	M16 × 60	62.5	64	21	18	9	16.5	34.5	3.5	160-240	7-9	S24, A45, A55
No. 20	20	M20 × 65	52.0	55	19	□21	8	15.0	24.0	10.0	160 - 240	7-9	S24 - S49

Ordering example: KLP - S - Nr. 26 - FV


 \square = square opening

The heel engages in the channel slot, securing the rail clip against torsion.




KLP - 60 Rail clips

FV Hot-dip	Clamping height	Allowable load®	Preferred for use with				
galvanized	h [mm]	[kN]	Standard profile I	Standard profile IPB	Crane and running tracks [®]		
60/10	10	F ₄ = 7.0	120 - 160	100	A65, S33, S41		
60/12	12	HALFEN Bolt	220-240	140	A100, S49, A75		
60/14	14	M16 × 60, Grade 4.6	240 - 280	160 - 180	A120, S54		
60/16	16	F ₂ = 11.25	300 - 340	200-220	S64		
60/18	18 ^③	HÁLFEN Bolt	360 - 380	240-260	-		
60/20	20®	M16 × 60, Grade 8.8	400 - 450	280 - 300	-		

- ② Take the load capacity of Halfen Channels into account (Cantilever must be considered when selecting the Halfen Channels and bolts)
- ③ Bolt M16 × 80 necessary ④ Check flange thickness of profile!

Order example: KLP - 60/10 - FV

Index

Accessories	93-96	HZA Halfen Cast-in channel DYNAGRIP®	30–38
Adjustment coupler HJV	95	HZA Halfen Cast-in channel, serrated	30-38
B L, BLQ brick tie anchor	84-86	HZL Framing channels, slotted	77-79
Brick tie anchor ML, BL	84-86	HZM Framing channels, serrated	77-79
Brick tie channel HMS	84	HZS Halfen Bolts, serrated	34-36
C old-rolled channels HTA-CE	20-21	Locking washer SIC	94
Cold-rolled channels HZA	32	M L, MLQ Brick tie anchor	84-86
Corner guard HKW	92		0.00
Corrosion protection Halfen Channels and bolts	12-13	N uts MU	94
Coupler sleeves VBM, SKM	95	Precast connection HVL	91
Curved Halfen Cast-in channels HTA-CS	29	Profiled metal sheet fixing channel HTU	70-76
Curved Halfen Cast-in channels HZA-CS	33	Profiles HM, HL	77-79
		Profiles, serrated, HZM, HZL	77-79
Dowels	87		
DYNAGRIP® Halfen Cast-in channels	30–38	R after shoe HSF	82
Dynamic Loads for HTA-CE Cast-in channels	27	Rail clips KLP	96
Dynamic Loads for HZA Cast-in channels	38	Restraint tie HKZ	89-90
E nd anchor ANK-E for Halfen HTA Channels	39	Restraint tie, serrated HKZ	89-90
and anchory with a for trainer trive charmers	33	Restraint with turnbuckle SPV	88
Fire resistances for HTA-CE Cast-in channels	28	Ring nuts RM	95
Fire resistances for HZA Cast-in channels	37	Serrated channels HZA (Anchoring systems)	30-38
Firewall connection (masonry)	86	Serrated channels HZM, HZL (Industrial)	77-79
Framing channels HM, HZM, HL, HZL	77-79	Serrated profiles HZA	30-38
H alfen Bolts HS	22-25	Serrated profiles, bolts	30-38
Halfen Bolts HSR	26	Short lengths of Halfen HTA-CE Channels	29
Halfen Bolts HZS	34-36	Short lengths of Halfen HZA Channels	33
Halfen Cast-in channels; corner elements	39	SIC Locking washer	94
Handrail connection systems HGB	56-69	SKM Coupler sleeve	95
HCW Curtain Wall System	43-55	Slotted framing channels HL, HZL	77-79
Hexagonal coupler SKM	95	SPH turnbuckle with right and left-hand threads	88
Hexagonal nuts - bolts	94	SPV Restraint with turnbuckle	88
HGB Handrail connection systems	56-69	Square washers VUS	94
HKW Corner guard	92	Standard lengths for Halfen Channels HTA-CE	29
HKZ Restraint tie, serrated	89-90	Standard lengths for Halfen Channels HZA	33
HL Framing channels, slotted	77 - 79	Standard lengths for Flamen Chainles 1127	33
HM Framing channels	77-79	Threaded rods	95
HMS Brick tie channels	86	Tightening torques Halfen HS Bolts	25
HNA Timber fixing straps	83	Tightening torques Halfen HZS Bolts serrated	35
Hot-rolled channels HTA-CE	18-29	Timber fixing	82-83
Hot-rolled channels HZA	30-38	Turnbuckle with right and left-hand thread SPH	88
HS Halfen Bolts	22-25	U S Washer	94
HSF Rafter shoe	82	VVasilei	24
HSR Halfen Bolts with nib	26	V BM Coupler sleeve	95
HTA-CE Halfen Cast-in Channels	18-29	VUS Square washer	94
HTU Profiled metal sheets fixing channels	70-76	Washar IIS VIIIS	Ω.4
HVL Precast connection	91	W asher US, VUS	94

Worldwide contacts for Leviat:

Australia

Leviat

98 Kurrajong Avenue, Mount Druitt, Sydney, NSW 2770 Tel: +61 - 2 8808 3100 Email: info.au@leviat.com

Austria

Leviat

Leonard-Bernstein-Str. 10 Saturn Tower, 1220 Wien Tel: +43 - 1 - 259 6770 Email: info.at@leviat.com

Belgium

Leviat

Borkelstraat 131 2900 Schoten Tel: +32 - 3 - 658 07 20 Email: info.be@leviat.com

China

Leviat

Room 601 Tower D, Vantone Centre No. A6 Chao Yang Men Wai Street Chaoyang District Beijing · P.R. China 100020 Tel: +86 - 10 5907 3200 Email: info.cn@leviat.com

Czech Republic

Leviat

Business Center Šafránkova Šafránkova 1238/1 155 00 Praha 5 Tel: +420 - 311 - 690 060 Email: info.cz@leviat.com

Finland

Leviat

Vädursgatan 5 412 50 Göteborg/Sweden Tel: +358 (0)10 6338781 Email: info.fi@leviat.com

France

Leviat

18, rue Goubet 75019 Paris

Tel: +33 - 1 - 44 52 31 00 Email: info.fr@leviat.com

Germany

Leviat

Liebigstrasse 14 40764 Langenfeld Tel: +49 - 2173 - 970 - 0 Email: info.de@leviat.com

India

Leviat

309, 3rd Floor, Orion Business Park Ghodbunder Road, Kapurbawdi, Thane West, Thane, Maharashtra 400607 Tel: +91 - 22 2589 2032 Email: info.in@leviat.com

Italy

Leviat

Via F.Ili Bronzetti 28 24124 Bergamo Tel: +39 - 035 - 0760711 Email: info.it@leviat.com

Malaysia

Leviat

28 Jalan Anggerik Mokara 31/59 Kota Kemuning, 40460 Shah Alam Selangor Tel: +603 - 5122 4182

Netherlands

Leviat

Oostermaat 3 7623 CS Borne Tel: +31 - 74 - 267 14 49 Email: info.nl@leviat.com

Email: info.my@leviat.com

New Zealand

Leviat

2/19 Nuttall Drive, Hillsborough, Christchurch 8022 Tel: +64 - 3 376 5205 Email: info.nz@leviat.com

Norway

Leviat

Vestre Svanholmen 5 4313 Sandnes Tel: +47 - 51 82 34 00 Email: info.no@leviat.com

Philippines

Leviat

2933 Regus, Joy Nostalg, ADB Avenue Ortigas Center Pasig City Tel: +63 - 2 7957 6381

Tel: +63 - 2 7957 6381 Email: info.ph@leviat.com

Poland

Leviat

UI. Obornicka 287 60-691 Poznań Tel: +48 - 61 - 622 14 14 Email: info.pl@leviat.com

Singapore

Leviat

14 Benoi Crescent Singapore 629977 Tel: +65 - 6266 6802 Email: info.sg@leviat.com

Spain

Levia

Polígono Industrial Santa Ana c/ Ignacio Zuloaga, 20 28522 Rivas-Vaciamadrid Tel: +34 - 91 632 18 40 Email: info.es@leviat.com

Sweden

Leviat

Vädursgatan 5 412 50 Göteborg Tel: +46 - 31 - 98 58 00 Email: info.se@leviat.com

Switzerland

Leviat

Hertistrasse 25 8304 Wallisellen Tel: +41 (0) 800 22 66 00 Email: info.ch@leviat.com

United Arab Emirates

Leviat

RA08 TB02, PO Box 17225 JAFZA, Jebel Ali, Dubai Tel: +971 (0)4 883 4346 Email: info.ae@leviat.com

United Kingdom

Leviat

A1/A2 Portland Close Houghton Regis LU5 5AW Tel: +44 - 1582 - 470 300 Email: info.uk@leviat.com

USA/Canada

Leviat

6467 S Falkenburg Road Riverview, FL 33578 Tel: (800) 423-9140 Email: info.us@leviat.us

For countries not listed

Email: info@leviat.com

Leviat.com

For information on certified management systems and standards see www.ancon.co.uk | www.aschwanden.com | www.halfen.com

